Math, asked by navyakasera, 1 year ago

if the diagonals of a rhombus of lengths 24cm and 18cm . find the length of the side of the rhombus and hence find its perimeter.......
pls give an explanation.......
best explained and correct answer will be marked as the brainliest.......​

Answers

Answered by BrainlyConqueror0901
40

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Side\:of\:Rhombus=15\:cm}}

{\bold{\therefore Perimeter\:of\:Rhombus=60\:cm}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline\bold{Given : } \\  \implies Diagonal (D_{1}) = 24 \: cm \\  \\ \implies Diagonal (D_{2}) = 18\: cm \\  \\ \underline\bold{To \: Find : } \\  \implies Side \:of \: Rhombus = ?\\\\\implies Perimeter\:of\:Rhombus=?

• According to given question :

 \bold{Rhombus \: Property : } \\  \implies Diagonals \: bisect \: each \: other \: at \: 90 \degree \\  \\  \implies All \: side \: of \: rhombus \: are \: equal \\  \\ \bold{Let \: ABCD\: is \: a \: Rhombus \: and \: point \: O \:  }\\  \bold{Where \: both \: Diagonals \: bisect   \: each \: other}\\ \\  \implies AO = CO = 8 \: cm \\   \\  \implies BO = DO = 12 \: cm \\  \\  \bold{In \:  \: Right \: angle \:  \triangle \: AOB}  \\ \implies  {AB}^{2}  =  {AB}^{2}  +  {BO}^{2}  \\  \\   \implies  {AB}^{2}  =  {9}^{2}  +  {12}^{2}  \\  \\  \implies AB =  \sqrt{81 + 144}  \\  \\  \implies AB=  \sqrt{225}  \\  \\  \implies  \bold{AB= 15  \: cm} \\  \\   \bold{\therefore Side \: of \: Rhombus \: is \: 15 \: cm}\\\\\bold{For\:finding\:perimeter:}\\\\\implies Perimeter\:of\:Rhombus=4\times side\\\\\implies Perimeter=4\times 15\\\\\bold{\implies Perimeter=60\:cm}\\\\\bold{\therefore Perimeter\:of\:Rhombus=60\:cm}

Answered by Anonymous
34

 \large \underline{ \underline{ \sf \: Solution : \:  \:  \: }}

Half of the diagonal of 18 and 24 is 9 and 12

So , by Pythagoras theorem we get ,

 \sf \to {h}^{2}  =  {b}^{2}  +  {p}^{2}  \\  \\  \sf \to</p><p> {h}^{2}  =  {(9)}^{2}  +  {(12)}^{2}  \\  \\  \sf \to</p><p> {h}^{2} = 225 \\  \\  \sf \to </p><p>h = 15 \: cm

Therefore , length of each side of the rhombus is 15 cm

We know that ,

  \large\fbox{ \sf \fbox{ Perimeter  \: of \:  rhombus = 4 × sides }}

 \to \sf Perimeter = 4 × 15  \\  \\ \to \sf</p><p>Perimeter = 75 \:  cm

Therefore , the perimeter of the given rhombus is 75 cm

Similar questions