If the diagonals of the rhombus are in the ratio 4:7 and the area is 504sqcm find the length of the diagonals
Answers
Answer:
let first diagonal be 4x and second diagonal be 7x.
Area of rhombus=[(4x)*(7x)]/2
504×2 =28x^2
1008/28=x^2
x^2=36
x=√36
x=6cm
so, diagonals are 6×4=24cm
7×6=42cm
hope it helps u dear☺️☺️☺️
Answer:
Diagonals are 24 cm and 42 cm.
Step-by-step explanation:
Given :
Diagonals of the rhombus are in the ratio 4 : 7 and the area is 504 cm²
To find :
Length of the diagonals.
Solution :
We know,
Area\;of\;rhombus\;= \frac{Diagonal_1*Diagonal_2}{2}Areaofrhombus=
2
Diagonal
1
∗Diagonal
2
Let the diagonals be,
4x and 7x
We have,
Area = 504 cm²
Substituting,
504\;=\;\frac{4x*7x}{2}504=
2
4x∗7x
504\;=\frac{28x^2}{2}504=
2
28x
2
Cross multiply,
1008\;=\;28x^21008=28x
2
x^2\;=\;\frac{1008}{28}x
2
=
28
1008
x^2\;=36x
2
=36
x = \sqrt{36}x=
36
x = 6x=6
Diagonals are,
4x = 24 cm
7x = 42 cm