Math, asked by ishwarhimani41, 9 months ago

if the difference between ci and si for 1.5 years at 22 2/9 % p a compounded half yearly is 5600, find difference between ci and si for 1 years at same rate (compounded half yearly

Answers

Answered by rajeevr06
0

Answer:

Let the principal = x

now a/q ,

CI =

x \times (1 +  \frac{200}{9 \times 200} ) {}^{3}  - x = x \times ( \frac{10}{9} ) {}^{3}  - x = x( \frac{1000}{729}  - 1) =   \frac{271}{729} x

& SI =

 \frac{x \times 200 \times 3}{9 \times 200}  =  \frac{x}{3}

CI - SI = 5600

i.e

 \frac{271}{729} x -  \frac{x}{3}  = x( \frac{271 - 243}{729} ) =  \frac{28}{729} x = 5600

28x = 5600 \times 729

x =  \frac{5600 \times 729}{28}  = 145800

now for one year, Required Difference =

145800 \times (1 +  \frac{200}{9 \times 200} ) {}^{2}  - 145800 -  \frac{145800 \times 200 \times 2}{9 \times 200}  = 145800 \times ( \frac{100}{81}  - 1) - 32400 = 145800 \times  \frac{19}{81}  - 32400 = 34200 - 32400 = 1800 \:  \: ans.

Similar questions