Math, asked by boss7343, 11 months ago

if the difference between simple interest and compound interest on a sum of money for 2years at 25/2 per annum is $150. the sum is ​

Answers

Answered by Deena007
1

Given,

Difference between CI and SI = $150

Rate = 25/2

Time = 2 years

Acccording to the question,

P[(1+R/100) - 1]^T - P×R×T/100 = $150

P[(1+25/2/100) - 1]^2 - P×25×2/2×100 = $150

After simplifying,

we get

17P - 16P/64 = $150

P = $960

Answered by TRISHNADEVI
2

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \:  SOLUTION \:  \: } \mid}}}}}

 \huge{ \underline{ \mathfrak{ \: Given : \mapsto}}} \\  \\  \:  \:  \:  \:  \:  \:  \:  \text{The  \: difference \:  between \:  simple \:  interest \:  } \\  \text{and \:  compound \:  interest  \: is \:  Rs.  \: 150.} \\  \\  \\  \huge{ \underline{ \mathfrak{Suppose, }}} \\  \\  \text{Principal = P} \\  \\  \text{Time, n = 2 years} \\  \\  \mathsf{</p><p>Rate \:  \:  of  \:  \: interest = \frac{25}{2} \%}

 \huge{ \underline { \mathfrak{ \: We \:  \:  know \:  \:  that, \: }}}</p><p> \: \\  \\  \\   \bold{S.I. =  \frac{P \times r \times n}{100} } \\  \\  \bold{  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{P \times  \frac{25}{2}  \times 2}{100} } \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \:   \:  =  \frac{P \times 25}{100} }

 \huge{ \underline{\mathfrak{ \:  Again, \: }}} \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \bold{C.I. = A - P } \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  = P(1 +  \frac{r}{100} )  {}^{n} -P } \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \: = P[(1 +  \frac{ \frac{25}{2} }{100}) {}^{2}   - 1]} \\  \\  \bold{\:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  =  P[(1 +  \frac{25}{200} ) {}^{2}  - 1]} \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \: =P \: [( \frac{225}{200}  ) {}^{2}  - 1]} \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \: = P \times  (\frac{50625}{40000} - 1) } \\  \\  \bold{\:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  = P \times ( \frac{50625 - 40000}{40000}) } \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \: = P \times  \frac{10625}{40000} } \\  \\  \bold{ \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \: =  \frac{P \times 10625}{40000} }

 \huge{ \mathbb{ \underline{ \: A.T.Q. \: }}} \\  \\   \\  \\ </p><p></p><p> \bold{ \: \: \: \:  C.I.  - S.I. = 150} \\  \\  \bold{\Longrightarrow  \frac{P \times 10625}{40000}  -  \frac{P \times 25}{100}  =150 } \\  \\  \bold{\Longrightarrow  \frac{(10625 \times P) -( 10000 \times P )}{40000} =150 } \\  \\  \bold{ \Longrightarrow 625 \times \: P  = 6000000} \\  \\  \bold{\Longrightarrow P =  \frac{6000000}{625} } \\  \\  \bold{ \therefore \:  \:  \underline{ \: P = 9600 \:  \: }}

 \text{Hence,} \\   \:  \:  \:  \:  \:  \:  \:  \text{The \:  sum \:  of \:  money  \: is  \: Rs. 9600}

Similar questions