Math, asked by utstusaeydioyciyffyi, 4 months ago

If the difference between the circumference and the radius of a circle is 37 cm then the circumference of the circle will be​

Answers

Answered by Anonymous
15

Given :

The difference between the circumference and the radius of a circle is 37 cm.

⠀⠀⠀⠀⠀⠀⠀

To find :

circumference of the circle.

⠀⠀⠀⠀⠀⠀⠀

Solution :

According to question,

:\implies\sf  2\pi \:  r \: - r = 37\\ \\

:\implies\sf \frac{44}{7}  \times r - r  = 37\\ \\⠀⠀⠀⠀⠀⠀

:\implies\sf  44  r - 7  r = 37 \times 7\\ \\⠀⠀⠀⠀⠀⠀

:\implies\sf  37r =259 \\ \\

:\implies\sf r = 7\\ \\⠀⠀⠀⠀⠀

\therefore\;{\underline{\sf{Radius\;of\;circle\;is\; \bf{7\;cm}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large 7\ cm}\end{picture}

We know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Circumference_{\;(circle)} = 2 \pi r}}}}\\ \\

Putting values,

:\implies\sf 2 \times \dfrac{22}{7} \times 44 \\ \\

:\implies{\boxed{\sf{\pink{44\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;circumference \;of\;circle\;is\; \bf{44\;cm}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀

Similar questions