If the difference between the length and breadth of a rectangle is 20m and its area is 400m2 Calculate The perimeter of the rectangle
Answers
Answered by
3
given
l-b=20
lb=400
from relation
![{(a + b)}^{2} = {(a - b)}^{2} + 4ab {(a + b)}^{2} = {(a - b)}^{2} + 4ab](https://tex.z-dn.net/?f=+%7B%28a+%2B+b%29%7D%5E%7B2%7D++%3D++%7B%28a+-+b%29%7D%5E%7B2%7D++%2B+4ab)
substitute given values (take a=l, b=b)
![{(l + b)}^{2} = {(l - b)}^{2} + 4lb {(l + b)}^{2} = {(l - b)}^{2} + 4lb](https://tex.z-dn.net/?f=+%7B%28l+%2B+b%29%7D%5E%7B2%7D++%3D++%7B%28l+-+b%29%7D%5E%7B2%7D++%2B+4lb)
![{(l + b)}^{2} = {20}^{2} + 1600 {(l + b)}^{2} = {20}^{2} + 1600](https://tex.z-dn.net/?f=+%7B%28l+%2B+b%29%7D%5E%7B2%7D++%3D++%7B20%7D%5E%7B2%7D++%2B+1600)
![l + b = \sqrt{400 + 1600} = \sqrt{2000} l + b = \sqrt{400 + 1600} = \sqrt{2000}](https://tex.z-dn.net/?f=l+%2B+b+%3D++%5Csqrt%7B400+%2B+1600%7D++%3D++%5Csqrt%7B2000%7D+)
we need perimeter
2(l+b)= 2√2000
l-b=20
lb=400
from relation
substitute given values (take a=l, b=b)
we need perimeter
2(l+b)= 2√2000
Answered by
1
Answer is given below:------
given
l-b=20
lb=400
from relation
{(a + b)}^{2} = {(a - b)}^{2} + 4ab(a+b)2=(a−b)2+4ab
substitute given values (take a=l, b=b)
{(l + b)}^{2} = {(l - b)}^{2} + 4lb(l+b)2=(l−b)2+4lb
{(l + b)}^{2} = {20}^{2} + 1600(l+b)2=202+1600
l + b = \sqrt{400 + 1600} = \sqrt{2000}l+b=400+1600=2000
we need perimeter
2(l+b)= 2√2000
given
l-b=20
lb=400
from relation
{(a + b)}^{2} = {(a - b)}^{2} + 4ab(a+b)2=(a−b)2+4ab
substitute given values (take a=l, b=b)
{(l + b)}^{2} = {(l - b)}^{2} + 4lb(l+b)2=(l−b)2+4lb
{(l + b)}^{2} = {20}^{2} + 1600(l+b)2=202+1600
l + b = \sqrt{400 + 1600} = \sqrt{2000}l+b=400+1600=2000
we need perimeter
2(l+b)= 2√2000
Similar questions