If the difference between the roots of the equation x2-13x + k = 0 is 17 find k
Answers
Answer:
The quadratic eq is x² - 13x + k = 0
and
The difference between the roots of quadratic equation is 17 i.e
\sf \Rightarrow α - β = 17 \: --- \: (i)⇒α−β=17−−−(i)
We know that , the sum of roots i.e α + β is
\sf \star \: \: \alpha + \beta = - \frac{b}{a}⋆α+β=−
a
b
Thus ,
\sf \Rightarrow α + β = 13 \: - - - \: (ii)⇒α+β=13−−−(ii)
Add eq (i) and (ii) , we get
\begin{gathered}\sf \Rightarrow 2α = 30 \\ \\ \sf \Rightarrow α = \frac{30}{2} \\ \\ \sf \Rightarrow α = 15\end{gathered}
⇒2α=30
⇒α=
2
30
⇒α=15
Put the value of α = 15 in eq (ii) , we get
\begin{gathered}\sf \Rightarrow 15 + β = 13 \\ \\ \sf \Rightarrow β = 13 - 15 \\ \\ \sf \Rightarrow β = -2\end{gathered}
⇒15+β=13
⇒β=13−15
⇒β=−2
Now , the product of roots i.e α × β is
\sf \star \: \: \alpha \times \beta = \frac{c}{a}⋆α×β=
a
c
Thus ,
\begin{gathered}\sf \Rightarrow 15 × -2 = k \\ \\ \sf \Rightarrow k = -30\end{gathered}
⇒15×−2=k
⇒k=−30
\therefore \underline{ \sf \bold{The \: value \: of \: k \: is -30}}∴
Thevalueofkis−30