Math, asked by kanhaiyaa2004, 10 months ago

If the difference between the simple and the compound interests on some principal amount at 20% for 3 years is Rs. 48 ,then the principal amount must be​

Answers

Answered by Anonymous
53

\huge{\fbox{\fbox{\bigstar{\mathfrak{\red{Answer}}}}}}

Attachments:
Answered by Sauron
44

Answer:

The Principal is Rs. 375.

Step-by-step explanation:

Given :

Rate = 20%

Difference between CI and SI = Rs. 48

Time = 3 years

To find :

The principal

Solution :

Let the Principal be P

\textsf{\underline{\underline{Simple Interest -}}}

  • Rate = 20%
  • Time = 3 years
  • Principal = P

\boxed{\sf{SI = \frac{Principal \times Rate \times Time}{100}}}

\sf{\longrightarrow} \: SI = \dfrac{P\times 20 \times 3}{100} \\  \\ \sf{\longrightarrow} \: SI = \dfrac{60P}{100}  \\  \\ \sf{\longrightarrow} \: SI = \dfrac{30P}{50}  \\  \\ \sf{\longrightarrow} \: SI = \dfrac{15P}{25}

\rule{300}{1.5}

\textsf{\underline{\underline{Compound Interest -}}}

  • Rate = 20%
  • Time = 3 years
  • Principal = P

{\boxed{\sf{CI= \left[P\left( 1 + \frac{R}{100}\right)^{N}}\right]-P}}

\sf{\longrightarrow} \: CI= P \times  \left(\dfrac{120}{100}\right)^{3}  - P \\  \\ \sf{\longrightarrow} \: CI= P \times  \dfrac{120}{100}  \times  \dfrac{120}{100}  \times  \dfrac{120}{100}  -   P\\  \\ \sf{\longrightarrow} \: CI= P \times  \dfrac{12}{10}  \times  \dfrac{12}{10} \times  \dfrac{12}{10}   -  P \\  \\ \sf{\longrightarrow} \: CI= P \times  \dfrac{6}{5} \times  \dfrac{6}{5} \times  \dfrac{6}{5}  - P \\  \\ \sf{\longrightarrow} \: CI= P \times  \dfrac{216}{125}  -P \\  \\ \sf{\longrightarrow} \: CI=  \dfrac{216P}{125} -P  \\  \\ \sf{\longrightarrow} \: CI=  \frac{216P - 125P}{125}  \\  \\  \sf{\longrightarrow} \: CI=  \dfrac{91P}{125}

\rule{300}{1.5}

\textsf{\underline{\underline{Principal - }}}

 \sf{\longrightarrow} \:  \dfrac{91P}{125}   -  \dfrac{15P}{25}  = 48 \\  \\  \sf{\longrightarrow} \:  \dfrac{91P - 75P}{125}  = 48 \\  \\  \sf{\longrightarrow} \:  \frac{16P}{125}  = 48 \\  \\  \sf{\longrightarrow} \: 16P = 48 \times 125 \\  \\  \sf{\longrightarrow} \: 16P = 6000 \\  \\  \sf{\longrightarrow} \: P =  \dfrac{6000}{16}  \\  \\  \sf{\longrightarrow} \: P = 375

Principal = Rs. 375

\therefore The Principal is Rs. 375.


Anonymous: Fantastic
Similar questions