Math, asked by vaikunthpatel67, 10 months ago

If the difference between the simple interest and
compound interest on some principal amount at 20%
per annum for 3 years is 48, then the principle
amount must be
(a) 550
(b) 500
fet 375
(d) 400​

Answers

Answered by BrainlyConqueror0901
40

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Principal=375\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Rate\%(r) = 20\% \\  \\  \tt:  \implies Time(t) = 3 \: years \\  \\  \tt:  \implies C.I- S.I = 48 \: rupees \\  \\  \red{\underline \bold{to \: find:}}\\  \tt:  \implies Principal(p) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I=  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies S.I= \frac{p \times 20 \times 3}{100}  \\  \\ \tt:  \implies S.I=  \frac{3p}{5}  -  -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies A =p(1 +  \frac{r}{100} )^{t}  \\  \\ \tt:  \implies A = p(1 +  \frac{20}{100} )^{3}  \\  \\ \tt:  \implies A=p(1 + 0.2)^{3}  \\  \\ \tt:  \implies A =p \times 1.728\\  \\  \bold{For \: C.I} \\ \tt:  \implies C.I =A - p \\  \\ \tt:  \implies C.I=1.728p - p \\  \\ \tt:  \implies C.I=0.728p -  -  -  -  - (2) \\  \\  \bold{As \: according \: to \: question} \\  \tt:  \implies C.I - S.I= 48 \\  \\  \tt:  \implies 0.728p - 0.6p = 48 \\  \\  \tt:  \implies  0.128p =48 \\  \\  \tt:  \implies p =  \frac{48}{0.128}  \\  \\   \green{\tt:  \implies p = 375 \: rupees}

Answered by ITzBrainlyGuy
16

 \huge{\sf {\underline \purple{Answer}}}

Given that

{ \sf{ \to rate \: of \: interest(r) = 20 percent}} \\ { \sf{ \to  time \: taken(t)}} =  {\sf{3 \: years}} \\  \to { \sf{compound \: interest \:  - simple \: interest = 48 \: rupees}}

 { \sf{ \underline \purple{We \: need \: to \: find : }}}

Principle amount = ?

We know that

simple interest (S.I) = prt/100

 \implies{ \sf{S.I   = \dfrac{p \times 20 \times3 }{100}}} \\  \implies{  \sf{S.I =  \dfrac{3p}{5} = 0.6p }}

assuming as equation ( 1 )

{ \sf \implies{Annum(A) = p {(1 +  \frac{r}{100}) }^{t} }}  \\ { \sf{ \implies A = p( {1 +  \frac{20}{100} )}^{3} }} \\ { \sf{ \implies A = p{( \frac{6}{5} ) }^{3} }} \\ { \sf{ \implies A = p(1.728)}}

For compound interest (C.I.)

{ \sf{ \implies \:C.I =A - p  }} \\  \\ { \sf{ \implies C.I = 1.728p - p = 0.728}}

Assuming as equation ( 2 )

According to the question:

C.I. - S.I. = 48

0.728p - 0.6p = 48

0.128p = 48

p = 48/0.128

p = 48000/128

p = 375 ₹

{\boxed{ \rm \orange{principle \: amount \:  =  \: 375 rupees}}}

Similar questions