Math, asked by dinoabhinavspinot, 1 month ago

If the difference between two acute angles of a right angled triangle is (2pi/5)c, find these two angles in radians.
if (2x/3)g, (3x/2)degree, (pix/75)c are the angles of a triangle, find them in degrees.

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-1}}

☆ Let assume that the two acute angle in radians measure be x and y and x > y.

We know,

☆ Sum of angles of a triangle is supplementary.

\rm :\longmapsto\:x + y + \dfrac{\pi}{2}  = \pi

\rm :\longmapsto\:x + y = \pi - \dfrac{\pi}{2}

\bf\implies \:x + y =\dfrac{\pi}{2}  -  -  -  - (1)

Also,

Given that,

\rm :\longmapsto\:x - y = \dfrac{\pi}{5}  -  -  -  - (2)

☆ On adding equation (1) and equation (2), we get

\rm :\longmapsto\:2x = \dfrac{\pi}{2}  + \dfrac{\pi}{5}

\rm :\longmapsto\:2x = \dfrac{5\pi + 2\pi}{10}

\rm :\longmapsto\:2x = \dfrac{7\pi}{10}

\rm :\longmapsto\:x = \dfrac{7\pi}{20}   -  -  -  - (3)

☆ On substituting the value of x in equation (1) we get

\rm :\longmapsto\:\dfrac{7\pi}{20}  + y   = \dfrac{\pi}{2}

\rm :\longmapsto\:  y   = \dfrac{\pi}{2}  - \dfrac{7\pi}{20}

\rm :\longmapsto\:  y   = \dfrac{10\pi - 7\pi}{20}

\rm :\longmapsto\:  y   = \dfrac{3\pi}{20}

Hence,

\begin{gathered}\begin{gathered}\bf\: Acute \: angles \: are \: -\begin{cases} &\sf{x = \dfrac{7\pi}{20} } \\  \\ &\sf{y = \dfrac{3\pi}{20} } \end{cases}\end{gathered}\end{gathered}

\red{\large\underline{\bf{Solution-2}}}

\begin{gathered}\begin{gathered}\bf\: Let \: the \: angles \: be-\begin{cases} &\sf{x =  {\bigg(\dfrac{2x}{3} \bigg) }^{g} }  \\ \\ &\sf{y =  {\bigg(\dfrac{3x}{2} \bigg) }^{ \degree} } \\ \\ &\sf{z = \dfrac{\pi \: x}{75} } \end{cases}\end{gathered}\end{gathered}

We know,

\rm :\longmapsto\: {1}^{g} = \dfrac{9}{10}^{\degree}

\rm :\longmapsto\: {\bigg(\dfrac{2x}{3} \bigg) }^{g} =  {\bigg(\dfrac{2x}{3} \times \dfrac{9}{10}  \bigg) }^{\degree}

\red{\rm :\longmapsto\: {\bigg(\dfrac{2x}{3} \bigg) }^{g} =  {\bigg(\dfrac{3x}{5} \bigg) }^{\degree}}

Also,

we know that

\rm :\longmapsto\: {1}^{c} = {\bigg(\dfrac{180}{\pi} \bigg) }^{\degree}

\rm :\longmapsto\:\dfrac{\pi \: x}{75} = {\bigg(\dfrac{\pi \: x}{75} \times \dfrac{180}{\pi}  \bigg) }^{\degree}

\red{\rm :\longmapsto\:\dfrac{\pi \: x}{75} = {\bigg(\dfrac{12\: x}{5} \bigg) }^{\degree}}

\begin{gathered}\begin{gathered}\bf\:So \: the \: angles \: be-\begin{cases} &\sf{x =  {\bigg(\dfrac{2x}{3} \bigg) }^{g} = {\bigg(\dfrac{3\: x}{5} \bigg) }^{\degree}}  \\ \\ &\sf{y =  {\bigg(\dfrac{3x}{2} \bigg) }^{ \degree} } \\ \\ &\sf{z = \dfrac{\pi \: x}{75} ={\bigg(\dfrac{12\: x}{5} \bigg) }^{\degree} } \end{cases}\end{gathered}\end{gathered}

We know that,

☆ Sum of interior angles of a triangle is 180°

\rm :\longmapsto\:x + y + z = 180\degree

\rm :\longmapsto\:{\bigg(\dfrac{3\: x}{5} \bigg) }^{\degree} + {\bigg(\dfrac{3\: x}{2} \bigg) }^{\degree} + {\bigg(\dfrac{12\: x}{5} \bigg) }^{\degree} = 180\degree

\rm :\longmapsto\:{\bigg(\dfrac{3\: x + 12x}{5} \bigg) }^{\degree} + {\bigg(\dfrac{3\: x}{2} \bigg) }^{\degree}  = 180\degree

\rm :\longmapsto\:{\bigg(\dfrac{15\: x}{5} \bigg) }^{\degree} + {\bigg(\dfrac{3\: x}{2} \bigg) }^{\degree}  = 180\degree

\rm :\longmapsto\:{\bigg(3x \bigg) }^{\degree} + {\bigg(\dfrac{3\: x}{2} \bigg) }^{\degree}  = 180\degree

\rm :\longmapsto\:{\bigg(\dfrac{6x + 3\: x}{2} \bigg) }^{\degree}  = 180\degree

\rm :\longmapsto\:{\bigg(\dfrac{9x}{2} \bigg) }^{\degree}  = 180\degree

\bf\implies \:x = 40\degree

Hence,

\begin{gathered}\begin{gathered}\bf\:So \: the \: angles \: are-\begin{cases} &\sf{x =   {\bigg(\dfrac{3\: x}{5} \bigg) }^{\degree}} = 24\degree  \\ \\ &\sf{y =  {\bigg(\dfrac{3x}{2} \bigg) }^{ \degree} = 60\degree} \\ \\ &\sf{z =  ={\bigg(\dfrac{12\: x}{5} \bigg) }^{\degree}  = 96\degree} \end{cases}\end{gathered}\end{gathered}

Similar questions