Math, asked by anghaaravind, 4 months ago

If the difference between two specific numbers is 12, the LCM of the two
numbers is 63 and the HCF of the two numbers is 3, then the sum of the
two numbers is

Answers

Answered by kailashmannem
60

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • If the difference between two specific numbers is 12, If the LCM of the two numbers is 63 and the HCF of the two numbers is 3, then the sum of the two numbers is ?.

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \sf{Let \: the \: numbers \: be \: x \: and \: y.}

  •  \sf{Difference \: between \: the \: numbers \: = \: 12.}

  •  \therefore{\sf{x \: - \: y \: = \: 12}}

  •  \sf{x \: = \: 12 \: + \: y}

  •  \sf{LCM \: of \: the \: given \: numbers \: = \: 63.}

  •  \sf{HCF \: of \: the \: given \: numbers \: = \: 3.}

  •  \sf{We \: know \: that,}

  •  \boxed{\sf{LCM \: * \: HCF \: = \: a \: * \: b}}

  •  \sf{63 \: * \: 3 \: = \: x \: * \: y}

  •  \sf{189 \: = \: (12 \: + \: y) \: y}

  •  \sf{189 \: = \: 12y \: + \: y^{2}}

  •  \sf{y^{2} \: + \: 12y \: - \: 189 \: = \: 0}

  •  \sf{Finding \: the \: factors \: by \: PSF \: method,}

  •  \sf{P \: = \: - \: 189 \: * \: y^{2} \: = \: - \: 189y^{2}}

  •  \sf{S \: = \: + \: 12y}

  •  \sf{F \: = \: - \: 21y, \: + \: 9y}

  •  \sf{Now,}

  •  \sf{y^{2} \: + \: 9y \: - \: 21y \: - \: 189 \: = \: 0}

  •  \sf{y \: (y \: + \: 9) \: - \: 21 \: (y \: + \: 9) \: = \: 0}

  •  \sf{(y \: - \: 21) \: (y \: + \: 9) \: = \: 0}

  •  \sf{y \: - \: 21 \: = \: 0 \: , \: y \: + \: 9 \: = \: 0}

  •  \sf{y \: = \: 21 \: , \: y \: = \: - \: 9}

  •  \textsf{ Since, the number cannot be negative,}

  •  \boxed{\therefore{\sf{y \: = \: 21}}}

  •  \textsf{We know that,}

  •  \sf{x \: - \: y \: = \: 12}

  •  \sf{x \: - \: 21 \: = \: 12}

  •  \sf{x \: = \: 21 \: + \: 12}

  •  \boxed{\therefore{\sf{x \: = \: 33}}}

  •  \textsf{Therefore, Sum of the 2 numbers =}

  •  \sf{x \: + \: y}

  •  \sf{33 \: + \: 21}

  •  \boxed{\sf{54}}

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\therefore{\sf{Sum \: of \: the \: numbers \: = \: 54.}}}

Answered by Anonymous
57

Given :-

Difference between 2 numbers = 12

LCM of the two numbers is 63

HCF of the two numbers is 3

To find :-

Sum of them

Solution :-

Let the number be a and b

a - b = 12

a = 12 + b

Now

LCM * HCF = Product of two numbers

63 * 3 = ab

189 = ab

189 = (12 + b)b

189 = 12b + b^2

\sf b^{2} + 12b - 189 = 0

\sf b^{2} + 9b - 21b-189= 0

b(b + 9) - 21(b + 9) = 0

(b - 21), (b + 9) = 0

Either

b = 0 + 21

= 21

OR,

b = 0 - 9

= -9

Since number can't be negative.

So

b = 21

a = 21 + 12 = 33

Similar questions