Math, asked by ishant7867, 10 months ago

if the difference of the roots of the equation x^2+kx+7=0 is 6 then possible values of k are

Answers

Answered by Delta13
7

Given:

  • The difference of roots is 6
  • Equation: x² +kx +7 = 0

To find:

The value of k.

Answer:

Let the roots of the given equation be  α and β

So, according to the question

 α - β= 6 ----(1)

Now, comparing the given equation with standard equation

ax² +bx +c =0

 \rightarrow \: a = 1 \\  \rightarrow \: b = k \\  \rightarrow \: c = 7

We know that,

Sum of zeroes =  \frac{ - coeffcient \: of \: x}{coefficient \: of \:  {x}^{2} }

 =  \frac{ - b}{ \:  \: a}  \\

 \implies \alpha +  \beta =  \frac{ - k}{1}  \\  \\  \green{ \implies \:  \alpha  + \beta   =  - k \:  \: } -   - (2)

Also,

Product of zeroes =  \frac{constant \: term}{coeffcient \: of \:  {x}^{2} }

 =  \frac{c}{a}  \\

 \implies \:  \alpha  \beta  =  \frac{7}{1}  \\   \\  \green{ \implies \:  \alpha  \beta  = 7} -  - (3)

From equation (1) and (2)

 \alpha  -   \cancel\beta  = 6 \\  \alpha  +   \cancel\beta  =6 - k\\  \\ 2 \alpha  =6 -  k \\  =  >  \alpha  =  \frac{ 6- k}{2}

Now putting the value of  α in eq(1)

 \alpha   - \beta  = 6 \\  \\  \implies \frac{6 - k}{2}  -  \beta  = 6 \\  \\  \implies  \frac{6 - k}{2}  - 6 =  \beta  \\  \\  \implies \frac{6 - k - 12}{2}  =  \beta  \\  \\  \implies \:  \frac{ - k - 6}{2}  =  \beta  \\  \\  \implies \:  \beta  =  \frac{ - k - 6}{2}

Substituting the values of  α and  β in eq(3)

 \implies \left ( \frac{6 - k}{2} \right) \times  \left( \frac{ - k - 6}{2} \right) = 7 \\  \\  \implies \: \left ( \frac{6( - k - 6) - k( - k - 6)}{2 \times 2} \right)  = 7 \\  \\  \implies \: \left ( \frac{ - 6k - 36 +  {k}^{2}  + 6k}{4} \right)  = 7 \\  \\  \implies \:  \left(  { \cancel{ - 6k} \:  - 36 +  {k}^{2}  \cancel {+ 6k}}\right) = 7 \times 4 \\  \\  \implies \:  {k}^{2}  - 36 = 28 \\  \\  \implies {k}^{2}  = 28 + 36 \\  \\  \implies \:  {k}^{2}  = 64 \\   \\  { \implies \: k =  \sqrt{64} } \\  \\  { \red{ \implies \boxed{ \: k = {+8 \: or \: -8}}}}\\ \\ \\ \texttt{Another way} \\ \\ \\     We \:have, \\ \\ \alpha + \beta=   -k \\ \alpha - \beta= 6 \\ \alpha \beta = 7 \\Now, \\ \\ (\alpha +\beta)^2-(\alpha-\beta)^2\\ Using \: identities \\ \\(a+b)^2= a^2+b^2+2ab \\(a-b)^2=a^2+b^2-2ab \\ \\ \: \implies \small{(\alpha^2+\beta^2+2\alpha\beta)-(\alpha^2+\beta^2-2\alpha\beta)}   \\ \\ = \small{(\alpha^2+\beta^2+2\alpha\beta)-\alpha^2-\beta^2+2\alpha\beta} \\ \\  = \small{\cancel{\alpha^2} \:+\cancel{\beta^2}+2\alpha\beta-\cancel{\alpha^2}\:+\:\cancel{\beta^2}+2\alpha\beta}\\ \\=4\alpha\beta\\ \\ \implies ( \alpha +\beta)^2-(\alpha-\beta)^2  =4\alpha\beta \\ \\ Putting \: values\\ \\(-k)^2-(6)^2=4(7) \\ \\ \implies k^2-36=28 \\ \\ \implies k^2= 28+36 \\ \\ \implies k^2=64\\ \\ \implies k= \sqrt{64} \\ \\ \red{\implies \boxed{k=+8 \: or \: -8}}

Similar questions