If the difference of the squares of the zeroes of the quadratic equation x2+px+45 is 144 find p
Answers
Answered by
1
Let α,β are the roots of the quadratic polynomial f(x) = x2+px+45 then
α + β = -p ---------(1) and αβ = 45
Given (α - β)2 = 144
∴ (α + β)2 – 4αβ = 144
⇒ (– p)2 – 4 × 45 = 144 [Using (1)]
⇒ p 2 – 180 = 144
⇒ p 2 = 144 + 180 = 324
Thus, the value of p is ± 18.
α + β = -p ---------(1) and αβ = 45
Given (α - β)2 = 144
∴ (α + β)2 – 4αβ = 144
⇒ (– p)2 – 4 × 45 = 144 [Using (1)]
⇒ p 2 – 180 = 144
⇒ p 2 = 144 + 180 = 324
Thus, the value of p is ± 18.
Answered by
0
Hey Joddar,
Let a,b are the zeroes of
p(x)=x^2+px+45.
=>a+b=-p/1=-p, ab=45/1=45
Also,|a-b|^2=144.(given).
:(a+b)^2-4ab=|a-b|^2
=>(-p)^2-4(45)=144
=>p^2=144+180=324
=>p=√324 or -√324
=>p=18 or p=-18.
Hope it helps ✌✌
Let a,b are the zeroes of
p(x)=x^2+px+45.
=>a+b=-p/1=-p, ab=45/1=45
Also,|a-b|^2=144.(given).
:(a+b)^2-4ab=|a-b|^2
=>(-p)^2-4(45)=144
=>p^2=144+180=324
=>p=√324 or -√324
=>p=18 or p=-18.
Hope it helps ✌✌
Similar questions
English,
8 months ago
Science,
8 months ago
Political Science,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Computer Science,
1 year ago