Math, asked by shreyasahu76260, 6 months ago


If the difference of the squares of two numbers is 45,
the square of the smaller number is 4 times the larger
number, then the rumber are :
(A) 9, 6 or 9, -6
(B) 5, 6 or 5, -6
(C) 9,5 or 9, -5
(D) None of these​

Answers

Answered by Mysterioushine
37

Given :

  • Difference of squares of two numbers = 45
  • Square of smaller number is 4 times the larger number

To Find :

  • The numbers

Solution :

Let the two numbers be "x" and "y"

Then , According to the given conditions ;

  • x² - y² = 45 .............(1)
  • y² = 4x ............(2)

Substituting the value of y² in equation(1) ,

 \\   : \implies \sf \:  {x}^{2}  - 4x - 45 = 0 \\  \\

 \\   : \implies \sf \:  {x}^{2}  - 9x + 5x - 45 = 0 \\  \\

 \\  :  \implies \sf \: x(x - 9) + 5(x - 9) = 0 \\  \\

 \\   : \implies \sf \: (x - 9)(x + 5) = 0 \\  \\

 \\   : \implies{ \underline{\boxed{\pink{\mathfrak{ \: x = 9 \: (or) \: x =  - 5}}}}}  \: \bigstar \\  \\

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━

Substituting x value as 9 in equation(1) ,

 \\   : \implies \sf \:  {(9)}^{2}  -  {y}^{2}  = 45 \\  \\

 \\   : \implies \sf \: 81 -  {y}^{2}  = 45 \\  \\

 \\  :  \implies \sf \:  -  {y}^{2}  = 45 - 81 \\  \\

 \\   : \implies \sf \:  -  {y}^{2}  =  - 36 \\  \\

 \\  :  \implies \sf \:  {y}^{2}  = 36 \\  \\

 \\   : \implies \sf \: y =  \sqrt{36}  \\  \\

 \\   : \implies{\underline{\boxed{\pink{\sf{ \: y = \pm \:  6}}}}} \:  \bigstar \\  \\

Now , Substituting x as -5 in equation(1) ;

 \\   : \implies \sf \:  {( - 5)}^{2}   -  {y}^{2}  = 45 \\  \\

 \\   : \implies \sf \: 25 -  {y}^{2}  = 45 \\  \\

 \\  :  \implies \sf \:  -  {y}^{2}  = 45 - 25 \\  \\

 \\  :  \implies \sf  -  {y}^{2}  = 20 \\  \\

 \\   : \implies \sf \:  {y}^{2}  = -20 \\  \\

Square of a number can't be negative. So , ignoring the value we got then ,

  • The values of x and y are 9 , 6 (or) 9 , -6. Hence , Option(A) is the required answer
Answered by Anonymous
2

\huge\fcolorbox{black}{lime}{Answer}

Let the two numbers be a and b

a2−b2=45.............................(1)

 b2=4a..............................................(2)

Putting (2) in (1)

a2−4a=45

a2−4a−45=0

a2−9a+5a−45=0

 a(a−9)+5(a−9)=0

(a−9)(a+5)=0

a=9ora=−5

If a=5,  b=25−b2=45

                 25−45=b2

                  b2=20(Neglecting this value)

IF a=9   81−b2=45

               81−45=b2

                b2=36

                 b=±6

Numbers are 9,6 or 9,-6

Similar questions