Math, asked by MiaMichealHat, 10 months ago

if the difference of the zeries of the polynomial p(x)=4x^2-4kx+9 is 4,find the value of k
plzzzzz answer this fast​

Answers

Answered by BrainlyPopularman
48

GIVEN :

Difference of zeros of polynomial p(x) = 4x² - 4kx + 9 is 4.

TO FIND :

Value of 'k' = ?

SOLUTION :

• We know that if a quadratic equation ax² + bx + c = 0 have two roots α & β , then Difference of roots –

  \\ \implies { \boxed{ \sf \:Difference \:  \: of \:  \: roots =   \pm \: \dfrac{ \sqrt{D} }{a}}}   \\

  \\ \implies { \boxed{ \sf \:Difference \:  \: of \:  \: roots =   \pm \: \dfrac{ \sqrt{ {b}^{2}  - 4ac} }{a}}}   \\

• Here –

  \\  \:  \:  \:  \: { \huge{.}} \:  \:  \sf \: a = 4  \\

  \\  \:  \:  \:  \: { \huge{.}} \:  \:  \sf \: b=  - 4k  \\

  \\  \:  \:  \:  \: { \huge{.}} \:  \:  \sf \: c= 9  \\

• So that –

  \\ \implies  \sf \:Difference \:  \: of \:  \: roots =   \pm \: \dfrac{ \sqrt{ {b}^{2}  - 4ac} }{a}   \\

  \\ \implies  \sf \:4 =   \pm \: \dfrac{ \sqrt{ {( - 4k)}^{2}  - 4(4)(9)} }{4}   \\

  \\ \implies  \sf \:4 =   \pm \: \dfrac{ \sqrt{ 16 {k}^{2}   - 4(36)} }{4}   \\

  \\ \implies  \sf \:4 =   \pm \: \dfrac{  \cancel4 \sqrt{  {k}^{2}   - 9} } { \cancel4}   \\

  \\ \implies  \sf \:4 =   \pm \:  \sqrt{  {k}^{2}   - 9}   \\

• Square on both sides –

  \\ \implies  \sf \:(4) ^{2}  =    \:  {  {k}^{2}   - 9}   \\

  \\ \implies  \sf \:16  =    \:  {  {k}^{2}   - 9}   \\

  \\ \implies  \sf \: {k}^{2}  = 25   \\

  \\ \implies \large { \boxed{ \sf \:  k  =  \pm \sqrt5 }}  \\

Similar questions