Math, asked by preethihebbar, 9 months ago

if the discriminant of the equation 6x√2-bx+2=0 is 1 then find value of b​

Answers

Answered by Anonymous
6

\huge{\underline{\underline{\bf{Solution}}}}

\rule{200}{2}

\tt given\begin{cases} \sf{Equation : 6\sqrt{2}x - bx + 2} \\ \sf{Equation \: have \: equal \: roots.} \end{cases}

\rule{200}{2}

\Large{\underline{\underline{\bf{To \: Find :}}}}

We have to find the value of b

\rule{200}{2}

\Large{\underline{\underline{\bf{Explanation :}}}}

We know that,

\Large{\star{\boxed{\sf{D = b^2 - 4ac}}}}

_____________[Put Values]

\sf{→0 = b^2 - 4(6\sqrt{2})(2)} \\ \\ \sf{→b^2 - 4(12\sqrt{2}) = 0} \\ \\ \sf{→b^2 - 48\sqrt{2} = 0} \\ \\ \bf{Put \:\sqrt{2} \: as \:1.41} \\ \\ \sf{→b^2 - 48(1.41) = 0} \\ \\ \sf{→b^2 = 67.68} \\ \\ \sf{→b = \sqrt{67.68}} \\ \\ \sf{→b = 8.22}

Answered by Anonymous
2

\huge\bold\green{Question}

If the discriminant of the equation 6x√2-bx+2=0 is 1 then find value of b

\huge\bold\green{Answer}

According to the question we have :-

\begin{lgathered}\sf given\begin{cases} \tt\blue{given\: eqn : 6\sqrt{2}x - bx + 2}  \end{cases}\end{lgathered}

Now we have to find the value of “ b ”

Simply , by using the Formula for discriminant

\huge\bold\red{D = b^2 - 4ac}

Now , by substituting the known values in formula :-

\begin{lgathered}\tt\implies{0 = b^2 - 4(6\sqrt{2})(2)} \\ \\ \tt\implies{b^2 - 4(12\sqrt{2}) = 0} \\ \\ \tt\implies{b^2 - 48\sqrt{2} = 0} \\ \\ \bf{substitute \:\sqrt{2} \: as \:1.41} \\ \\ \tt\implies{b^2 - 48(1.41) = 0} \\ \\ \tt\implies{b^2 = 67.68} \\ \\ \tt\implies{b = \sqrt{67.68}} \\ \\ \implies\tt\green{b = 8.22}\end{lgathered}

Hence , the required value of “ b ” is 8.22

Similar questions