Math, asked by Radhekrishn0777, 9 months ago

If the distance between A(9,x) and B(15,11) is 10 units then find x. ​

Answers

Answered by BrainlyPopularman
8

GIVEN :

The distance between A(9,x) and B(15,11) is 10 units.

TO FIND :

• Value of 'x' = ?

SOLUTION :

• If two points are  \:\: { \bold{A(x_{1} , y_{1})}} \:\: and  \:\: { \bold{B(x_{2} , y_{2})}} \:\: then Distance –

 \\  \dashrightarrow \: \large{ \boxed{ \bold{AB =  \sqrt{ {(x_{2} - x_{1})}^{2}  +  {(y_{2} - y_{1})}^{2} }}}}  \\

• Here –

 \\  \:\: { \huge{.}} \:  \: { \bold{x_{1}  = 9}} \:\: \\

 \\  \:\: { \huge{.}} \:  \: { \bold{x_{2}  = 15}} \:\: \\

 \\  \:\: { \huge{.}} \:  \: { \bold{y_{1}  = x}} \:\: \\

 \\  \:\: { \huge{.}} \:  \: { \bold{y_{2}  = 11}} \:\: \\

• Now put the values –

 \\  \implies \:{ \bold{10 =  \sqrt{ {(15 - 9)}^{2}  +  {(11 - y)}^{2} }}}  \\

 \\  \implies \:{ \bold{10 =  \sqrt{ {(6)}^{2}  +  {(11 - x)}^{2} }}}  \\

 \\  \implies \:{ \bold{10 =  \sqrt{36+  {(11 - x)}^{2} }}}  \\

• Square on both sides –

 \\  \implies \:{ \bold{ {(10)}^{2} =  {36+  {(11 - x)}^{2} }}}  \\

 \\  \implies \:{ \bold{{36+  {(11 - x)}^{2}  = 100}}}  \\

 \\  \implies \:{ \bold{{{(11 - x)}^{2}  = 100 - 36}}}  \\

 \\  \implies \:{ \bold{{{(11 - x)}^{2}  =64}}}  \\

 \\  \implies \:{ \bold{{11 - x= \sqrt{64}}}}  \\

 \\  \implies \:{ \bold{{11 - x= \pm \: 8}}}  \\

▪︎ Take (+) sign –

 \\  \implies \:{ \bold{{11 - x= 8}}}  \\

 \\  \implies \:{ \bold{{x= 11 - 8}}}  \\

 \\  \implies \large{ \boxed{ \bold{x= 3}}}  \\

▪︎ Take (-) sign –

 \\  \implies \:{ \bold{{11 - x= - 8}}}  \\

 \\  \implies \:{ \bold{{x= 11 +  8}}}  \\

 \\  \implies \large{ \boxed{ \bold{x= 19}}}  \\

Answered by ayesha2407
2

Answer:

your answer is in above pic

Attachments:
Similar questions