Physics, asked by toufiqahmad460, 9 months ago

if the distance between the earth and moon is 3.84×10⁵ km ,than calculate the exerted by the earth on the moon (take mass of the earth 6.4×10² kg mass of the moon 7.4×10²²kg​

Answers

Answered by DrNykterstein
4

Diagram:

 \setlength{ \unitlength}{1cm} \thicklines \begin{picture}(10,10) \put(5,1){ \circle{4}}  \put(10,1){ \circle{0.4}} \put(4.7, - 0.4){ \sf earth}  \put(9.7, - 0.3){ \sf moon} \put(5,1){ \line(1,0){5}}  \put(7.5,1.2){ \sf d}  \put(4.9,1.2){ \sf M} \put(9.7,0.5){ \sf m} \end{picture}

 \qquad  \sf F =  \dfrac{GMm}{ {d}^{2} }  \\  \\  \underline{  \sf Given} \\  \hookrightarrow  \sf  \quad G = 6.67 \times  {10}^{ - 11} \:  N {m}^{2}  {kg}^{ - 2}      \\  \hookrightarrow  \sf \quad M = 6.4 \times  {10}^{24}  \: kg \\  \hookrightarrow \quad \sf m = 7.4 \times  {10}^{22}  \: kg \\  \hookrightarrow \quad  \sf d = 3.84 \times  {10}^{8 }  \: m \\  \\  \sf \rightarrow \quad F =  \frac{6.67 \times  {10}^{ - 11} \times 6.4 \times  {10}^{24}  \times 7.4 \times  {10}^{22}  }{ {(3.84 \times  {10}^{8} )}^{2} }  \\  \\ \sf \rightarrow \quad F =  \frac{315.89 \times  {10}^{ - 11 + 24 + 22} }{14.74 \times  {10}^{16} }  \\  \\ \sf \rightarrow \quad F =  \frac{315.89}{14.74}  \times  \frac{ {10}^{35} }{ {10}^{16} }  \\  \\ \sf \rightarrow \quad F = 21.43 \times  {10}^{35 - 16}  \\  \\ \sf \rightarrow \quad F = 21.36 \times  {10}^{19} \:  N \\  \\  \\  \underline{ \sf Properties \:  Used} \\  \star  \sf \quad  { ({a}^{n}) }^{m}  =  {a}^{m \times n}  \\  \\  \star \quad \sf  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \\  \\  \star \quad \sf  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

Answered by shaktisrivastava1234
3

 \huge  \sf  {\fbox{\fbox{\red{\fbox{Answer:}}}}}

 \huge \bf{Given:-}

\sf {→Mass \: of \: the \: earth,m_1 = 6 \times{{10}^{24} }}

 \sf {→Mass \: of \: the \: moon,m_2 = 7.4\times{{10}^{22} }}

\sf {→Distance \: between \: the \: earth \: and \: moon,r = 3.84\times{{10}^{5} }}

\sf {→Distance \: between \: the \: earth \: and \: moon,r = (3.84\times{{10}^{5} \times 1000)m }}

 \sf {→Distance \: between \: the \: earth \: and \: moon,r = 3.84\times{{10}^{8}m}}

 \huge \bf{To \: find:- }

\sf{⇒Force \: exerted \: to \: one \: body \: to \: another \: body.}

 \huge \bf{Formula \: used: - }

  \leadsto\sf{F =G \times  \frac{m_1 \times m_2}{r^2}  }

 \huge \bf{Concept \: used: - }

  \sf{Gravitational \: constant,G=6.7 \times {10}^{- 11N} N{m}^{2}k  {g}^{ - 2}  }

  \huge\bf{According \: to \: Question:-}

\bf{F = \frac{6.7 \times  {10}^{ - 11}  \times 6 \times  {10}^{24}  \times 7.4 \times  {10}^{22}} {(3.84 \times  {10}^{8} )^{2} } = 2.01 \times  {10}^{20} newtons}

 \sf\longmapsto{2.01 \times  {10}^{20} newtons}

__________________________________________________

Similar questions