Math, asked by pandey6023, 5 months ago

if the distance between the points (3 2) and(-1 x) is 5 then x is equal to

Answers

Answered by Anonymous
4

\sf \pink{Given}\begin{cases}&\sf{Coordinates\:of\:point\:P=\bf{(3,2).}} \\ \\ &\sf{Coordinates\:of\:point\:Q=\bf{(-1,x).}} \\ \\ &\sf{Distance\:between\:point\:P\:and\:Q=\bf{5\:units.}}\end{cases} \\ \\

To FinD:-

The value of x.

SolutioN:-

We know that distance formula is,

\normalsize{\purple{\underline{\boxed{\sf{Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}}}}}

\sf {Here}\begin{cases}&\sf{x_2=\bf{-1}} \\ &\sf{x_1=\bf{3}} \\ &\sf{y_2=\bf{x}} \\ &\sf{y_1=\bf{2}} \\ &\sf{Distance=\bf{5}}\end{cases} \\ \\

  • Putting the values,

 \\ :\normalsize\implies{\sf{5=\sqrt{((-1)-3)^2+(x-2)^2}}}

 \\ :\normalsize\implies{\sf{5=\sqrt{(-1-3)^2+(x-2)^2}}}

 \\ :\normalsize\implies{\sf{5=\sqrt{(-4)^2+(x^2-2.x.2+2^2)}(Identity=a^2-2ab+b^2)}}

 \\ :\normalsize\implies{\sf{5=\sqrt{16+x^2-4x+4}}}

 \\ :\normalsize\implies{\sf{5=\sqrt{20+x^2-4x}}} \\

  • Squaring both the sides,

 \\ :\normalsize\implies{\sf{5^2=20+x^2-4x}}

 \\ :\normalsize\implies{\sf{25=20+x^2-4x}}

 \\ :\normalsize\implies{\sf{25-20=x^2-4x}}

 \\ :\normalsize\implies{\sf{5=x^2-4x}}

 \\ :\normalsize\implies{\sf{0=x^2-4x-5}}

 \\ :\normalsize\implies{\sf{x^2-4x-5=0}} \\

  • Splitting the middle term,

 \\ :\normalsize\implies{\sf{x^2+x-5x-5=0}}

 \\ :\normalsize\implies{\sf{x(x+1)-5(x+1)=0}}

 \\ :\normalsize\implies{\sf{(x-5)(x+1)=0}} \\ \\

 \\ :\normalsize\implies{\sf{x-5=0}}

\normalsize\therefore\boxed{\sf{\mathfrak{\purple{x=5}}}} \\ \\

 \\ :\normalsize\implies{\sf{x+1=0}}

\normalsize\therefore\boxed{\sf{\mathfrak{\purple{x=-1}}}} \\ \\

Value of x is (5) or (-1) .

Similar questions