Math, asked by amishubhi5121, 1 year ago

If the distance between the points (4,k) and (1,0) is 5 tgen what can be the possible value of k

Answers

Answered by bhuvaneshwar76
0
4k-10=5
4k=5+10
4k=15
k=15/4
Answered by Anonymous
142

Given:-

  • Points are (4 , k) and (1 , 0)
  • Distance between the points (4 , k) and (1 , 0) is 5

To Find :-

  • Possible value of K

Solution :-

We know that :

Distance between two points (x₁ , y₁) and (x₂ , y₂) is given by :-

\bigstar\;\;\pink{\mathsf{Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}}

We are given, points are (4 , k) and (1 , 0).Where :-

  • x₁ = 4
  • x₂ = 1
  • y₁ = k
  • y₂ = 0

⠀⠀⠀⠀⠀\small\underline{\pmb{\sf According \: to \: the \: question  :-}}\\

\:  \: \:  \:  \:  \:  \: \:\pink{ :\implies \mathsf{\sqrt{(1 - 4)^2 + (0 - k)^2} = 5}}\\

\:  \: \:  \:  \:  \:  \: \: :\implies \mathsf{(1 - 4)^2 + (0 - k)^2 = 25}\\

\:  \: \:  \:  \:  \:  \: \: :\implies \mathsf{(-3)^2 + (-k)^2 = 25}\\

\:  \: \:  \:  \:  \:  \: \: :\implies \mathsf{9 + k^2 = 25}\\

\:  \: \:  \:  \:  \:  \: \: :\implies \mathsf{k^2 = 25 - 9}\\

\:  \: \:  \:  \:  \:  \: \: :\implies \mathsf{k^2 = 16}\\

\:  \: \:  \:  \:  \:  \: \: :\implies \mathsf{k = \sqrt{16}}\\

\:  \: \:  \:  \:  \:  \: \: :\implies \mathsf{k = \sqrt{(\pm\;4)^2}}\\

\:  \: \:  \:  \:  \:  \:\pink{ \: :\implies \mathsf{k = \pm\;4}}\\

\therefore\:\underline{\textsf{ Possible values of k are \textbf{± 4}}}.\\

Similar questions