Math, asked by aryansethi003, 11 months ago

If the distance between the
points (4,p)and (1,6) is 5 units
Then find the value of p

Answers

Answered by Sharad001
52

Question :-

If the distance between the points (4,p) and (1,6) is 5 units ,then find the value of p.

Answer :-

→ p = 2 or 10 .

To Find :-

→ Value of p

Formula used :-

 \sf \: distance \: between \: the \: points \: (x_1, y_1) \\  \sf and \: (x_2 \: ,y_2) \: is \:  -  \\ \boxed{ \sf D =  \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2 -y_1) }^{2}  } } \\

Solution :-

Given that the distance between point (4,p) and (1,6) is 5 units ,

 \sf (4,p) \implies x_1 = 4, \:  y_1= p \\ \\ \sf (1,6)  \implies \: x_2 = 1 \:, \:  y_2 = 6 \:  \\  \\ \sf D = 5 \:  Units  \:  \\  \\  \bf \red{Now  \: ,apply  \: the \:  given \:  formula } \\  \\  \to \sf 5 =  \sqrt{ {(4 - 1)}^{2} +  {(6 - p)}^{2}  }  \\  \\  \bf \green{Squaring  \: on  \: both \:  sides } \\  \\  \to \:  {(5)}^{2}  =  { \bigg \{\sqrt{ {(4 - 1)}^{2} +  {(6 - p)}^{2}  }  \bigg \} \: }^{2}  \\  \\  \to \sf \: 25 = 9 + {(6 - p)}^{2}  \\  \\  \to \sf \: 25 - 9 =  {(6 - p)}^{2}  \\  \\  \to \sf 16 =  {(6 - p)}^{2}  \\  \because \bf {(x - y)}^{2} =  {x}^{2}   +  {y}^{2} - 2xy  \\    \\ \to \sf 16 = 36 +  {p}^{2}  - 12p  \\   \\  \to \sf \: {p}^{2}  - 12p + 36 - 16 = 0 \\  \\  \to \sf {p}^{2}  - 12p + 20 = 0 \\  \\  \to \sf  {p}^{2}  - 10p - 2p + 20 = 0 \\  \\  \to \sf \: p(p - 10) - 2(p - 10) = 0 \\  \\  \to \sf (p - 10)(p - 2) = 0 \\  \\   \bf \: case \: (1) \\  \\  \implies  \sf p - 10 = 0 \\ \implies \boxed{ \sf p = 10  } \\  \\  \bf case \: (2) \\  \\  \implies \sf p - 2 = 0 \\  \implies \boxed {\sf p = 2}

Answered by FIREBIRD
9

Answer:

p can be 10 or 2

Step-by-step explanation:

We Have :-

Points ( 4 , p ) and ( 1 , 6 )

Distance between them is 5 units

To Find :-

p

Formula Used :-

Distance² = ( x₂ - x₁ )² + ( y₂ - y₁ )²

Solution :-

( 5 )² = ( 1 - 4 )² + ( 6 - p )²

25 = 9 + 36 + p² - 12p

p² - 12p + 20 = 0

p² - 10p - 2p + 20 = 0

p ( p - 10 ) - 2 ( p - 10 ) = 0

( p - 10 ) ( p - 2 ) = 0

so , p = 10 or 2

p can be 10 or 2

Similar questions