Math, asked by Rentzu, 11 months ago

if the distance between the points A(2,-3) and B (2,a) is 5, then the negative value of a is​

Answers

Answered by Sharad001
5

Question :-

If the distance between the points A(2,-3) and

B(2,a) is 5 units ,then find the negative value of a.

Answer :-

→ a = 2 .

or may be

\to  \boxed{\sf a =  \frac{ - 6 \pm \sqrt{ - 28} }{2}  } \\ \sf \:  this \: is \: an \: imaginary \: number \: \:

To Find :-

Negative value of a .

Solution :-

According to the question ,

→ Distance between A(2,-3) and B(2,a) is 5 units .

We know that ,

 \sf \: distance \: between \: points \: A(x_1 , y_1 ) \:  \: and \:  \\ \sf \:  B(x_2 , y_2) \: is \:  -  \\  \\  \to \sf \:  AB =  \sqrt{ {(x_2  -  x_1 )}^{2}  +  {(y_2 -  y_1 )}^{2} }  \\

Given that AB = 5 units .

apply the distance formula between points A(2,-3)

and B(2,a)

 \to \sf AB = 5 =  \sqrt{ {( 2 -  2 )}^{2}  +  { \{a -  ( - 3)  \}}^{2} }  \\ \:  \\  \to \sf \: 5 =  \sqrt{ {(a + 3)}^{2} }   \:  \: ...eq.(1)\\  \\  \large \mathfrak{squaring \: on \: both \: sides \: } \\  \:  \\  \to \sf \:  25 =  {(a + 3)}^{2}  \\  \\  \to \sf 25 =  {a}^{2}  + 9 + 6a \:  \\  \\  \to \sf \:  {a}^{2}  + 6a + 9 - 25 = 0 \\  \\  \to \sf \: {a}^{2}  + 6a + 16 = 0 \\  \\ \bf apply \: shri \: dharacharya \: principle \\  \\  \to \sf \:  a =  \frac{ - 6 \pm \sqrt{ {6}^{2}  - 4 \times 16} }{2}  \\  \\  \to \sf \:  a =  \frac{ - 6 \pm \sqrt{36 - 64} }{2}  \\  \\  \to  \boxed{\sf a =  \frac{ - 6 \pm \sqrt{ - 28} }{2}  } \\ \sf \:  this \: is \: an \: imaginary \: number \:  \\  \\  \sf \: or \:  \\  \bf \: from \: eq.(1) \\  \\  \to \sf \:  5 =  \sqrt{  {(a + 3)}^{2}  }  \\  \\  \to \sf 5 = a + 3 \\  \\  \to  \boxed{\sf \: a = 2} \\  \\ \sf so \: here \: no \: value \: of \: a \: is \: negative \:

Now ,check that 2 is the value of a or not .

Hence put a = 2

 \to \sf \: 5 =  \sqrt{ {(2 + 3)}^{2} }  \\  \\  \to \sf 5 =  \sqrt{25}  \\  \\  \to \: 5 =  5

hence here a = 2 only .

Similar questions