If the distance between the points ( a cos 48° , 0 ) and ( 0 , a cos 12 ° ) is d , then d² - a² = ?
smartcow1:
i am having trouble with this, sorry
Answers
Answered by
86
Given two points in 2-dimensions:
A = (a Cos 48° , 0) and B = (0, a Cos12°)
AB = d given
=> d² = (a cos 48° - 0)² + (0 - a Cos 12°)²
= a² * (Cos² 48° + Cos² 12°)
= a² * [(1 + cos 96°)/2 + (1 + cos 24°)/2 ]
= a² * [ 2 + 2 Cos 60° * Cos 36° ] /2
2 d² = a² * [2 + Cos 36°]
2 (d² - a²) = a² Cos 36°
=> d² - a² = a²/2 * Cos 36°
To find the value of Cos 36° :
A=36°Sin (2A) = Sin (180° - 3A) = Sin 3A2 Sin A Cos A = Sin A * (3 - 4 Sin² A)4 Sin² A + 2 Cos A - 3 = 04 Cos² A - 2 Cos A - 1 = 0Cos A = [1 + √5 ]/4Cos 36° = [1 + √5]/4
A = (a Cos 48° , 0) and B = (0, a Cos12°)
AB = d given
=> d² = (a cos 48° - 0)² + (0 - a Cos 12°)²
= a² * (Cos² 48° + Cos² 12°)
= a² * [(1 + cos 96°)/2 + (1 + cos 24°)/2 ]
= a² * [ 2 + 2 Cos 60° * Cos 36° ] /2
2 d² = a² * [2 + Cos 36°]
2 (d² - a²) = a² Cos 36°
=> d² - a² = a²/2 * Cos 36°
To find the value of Cos 36° :
A=36°Sin (2A) = Sin (180° - 3A) = Sin 3A2 Sin A Cos A = Sin A * (3 - 4 Sin² A)4 Sin² A + 2 Cos A - 3 = 04 Cos² A - 2 Cos A - 1 = 0Cos A = [1 + √5 ]/4Cos 36° = [1 + √5]/4
Answered by
26
S O L U T I O N
E X P L A I N E D
I N
T H E
A T T A C H M E N T S:
E X P L A I N E D
I N
T H E
A T T A C H M E N T S:
Attachments:
Similar questions