if the distance between the points A (k,0) and B (0,k) is 10, find the possible values of k.
Answers
Answered by
7
hello..........
by distance formula
√[k-0]²+[0-k]²=AB
√k²+k²=10
√2k²=10
k√2=10
k=10/√2
k=5√2
k=5×1.414 [using√2=1.414]
k=+-7.07
by distance formula
√[k-0]²+[0-k]²=AB
√k²+k²=10
√2k²=10
k√2=10
k=10/√2
k=5√2
k=5×1.414 [using√2=1.414]
k=+-7.07
raoyousha:
no thats incorrect
Answered by
1
by distance formula
distance between AB = [(x2 - x1)^2 + (y2 - y1)^2] ^1/2
10= [(0 - k)^2 + (k - 0)^2] ^1/2
10= [(0 - 2.0.k + k^2) + (k^2 - 2.0.k + 0)] ^1/2
10= (k^2 +k^2) ^1/2
10= (2k^2) ^1/2
10= k(2^1/2)
therefore k= 10/2^1/2
distance between AB = [(x2 - x1)^2 + (y2 - y1)^2] ^1/2
10= [(0 - k)^2 + (k - 0)^2] ^1/2
10= [(0 - 2.0.k + k^2) + (k^2 - 2.0.k + 0)] ^1/2
10= (k^2 +k^2) ^1/2
10= (2k^2) ^1/2
10= k(2^1/2)
therefore k= 10/2^1/2
Similar questions