If the distance between the points (asin 42 ,0 )and (0, sin 78 a) is d,then d^2-a^2
Answers
Step-by-step explanation:
(asin42-0)²+(0-sin78)²=d²
solve this u get urs answer perfectly
The value of d² - a² is - a²/2 cos 36°.
Given: The distance between the points ( a sin 42°, 0 ) and ( 0, a sin 78° ) is d.
To Find: The value of d² - a².
Solution:
- We know that the distance between two points can be found using the formula,
Distance = √ ( ( x2 - x1 )² + ( y2 - y1 )² ) ......(1)
- We will also need a formula for trigonometrical identities,
sin²Ф = ( 1 - cos 2Ф ) / 2 .......(2)
cos C + cos D = 2 cos ( C+D )/2 × cos ( C - D )/2 .......(3)
Using the distance formula with points ( a sin 42°, 0 ) and ( 0, a sin 78° ) from (1), we get;
Distance = √ ( ( x2 - x1 )² + ( y2 - y1 )² )
⇒ d² = a² sin² 42° + a² sin² 78°
⇒ d² = a² [ ( 1 - cos 84° )/2 + ( 1 - cos 156° )/2 ] [using (2) ]
⇒ d² = a²/2 [ 2 - ( cos 84° + cos 156° ) ] [ using (3) ]
⇒ d² = a²/2 [ 2 - ( 2×cos 60° × cos 36°) ]
⇒ d² = a² [ 1 - cos 60° × cos 36° ]
⇒ d² = a² [ 1 - 1/2 × cos 36° ]
⇒ d² = a² - a²/2 cos 36°
⇒ d² - a² = - ( a²/2 ) × cos 36°
Hence, the value of d² - a² is - ( a²/2 ) × cos 36°.
#SPJ2