Math, asked by dorothea13, 5 months ago

If the distance between the points M (-1,-1) and N (2,x) is 5 units, then the value of x can be

Answers

Answered by ItzWhiteStorm
64

Solution:

\\

  • Here,the distance between the points M(-1,-1) and N(2,x) is 5 units,so we should find the value of x by applying the distance formula,

\\

As we know that,

\\

\toDistance=\sf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2} }}

\\

Given that,

\\

  • \rm{x_1,y_1}  = (-1,-1)
  • \rm{x_2,y_2}  = (2,x)

\\

Applying the values,

\\

\implies\sf{\sqrt{\big(2-(1)\big)^2\: + \:\big(x-(-1)\big)^2}=5}\\ \\ \implies\sf{\sqrt{(2+1)^2\:+\:(x+1)^2}=5}\\ \\ \implies\sf{\sqrt{(3)^2\:+\:(x+1)^2}=5 }\\ \\ \implies\sf{9\:+\:(x+1)^2=5^2}\\ \\ \implies\sf{9\:+\:(x+1)^2\:=25} \\ \\ \implies\sf{(x+1)^2=25 - 9}\\ \\ \implies\sf{(x+1)^2=16}\\ \\ \implies\sf{x+1\:=\: \sqrt{16}}\\ \\ \implies\sf{x +1 = \pm\:4}\\ \\ \implies\sf{x = \pm\:4 -1}\\ \\ \implies\sf{x= 3\:(or)-5}

\\

  • Therefore,the value of x is 3(or)-5.

_____________________________

Answered by ravitavisen
93

 \sf {Ratio = 1.3.Y \tiny3}

 \sf{Now \:  Let \:  P ( x ,y )}

 \sf {X = }\frac{1(6) + 3(2)}{1 + 3} \:  =  \frac{6 + 6}{4} \:  =  \frac{12}{4} = 3

 \sf {X = }\frac{1(5) + 3(1)}{5 + 3} \:  =  \frac{5 + 3}{4} \:  =  \frac{8}{4} = 2

 \sf{So  \: P ( x , y ) = ( 3 , 2 ) }

 \sf \pink{Swipe \:  to  \: see \:  full  \: solution} \rightarrow

Attachments:
Similar questions