Math, asked by shivam3292, 9 months ago

if the distance between two point (x,7)and (3,2)is 10 find the value of x​

Answers

Answered by BrainlyPopularman
3

Question :

▪︎ If the distance between two points (x , 7) and (3 , 2) is 10 unit , find the value of x = ?

ANSWER :

GIVEN :

• Distance between two points (x , 7) and (3 , 2) is 10 unit.

TO FIND :

• Find the value of x = ?

SOLUTION :

If two points are  \:  \: { \bold{( x_{1} , y_{1}) \:  \: and \:  \: ( x_{2} , y_{2}) }} \:  \: then Distance is –

  \\ { \huge{\star}} \: \:  \large  { \green{  \boxed{\bold{Distance = \sqrt{ {{( x_{2} -  x_{1} ) }^{2}  +( y_{2} -  y_{1} ) }^{2} }  }}}} \:  \:  \\

• Here –

  \\ \:  \: \:  \: . \:  \:  { \blue{ \bold{ x_{1} = x }}} \:  \:  \\

  \\ \:  \: \:  \: . \:  \:  { \blue{ \bold{ x_{2} = 3 }}} \:  \:  \\

  \\ \:  \: \:  \: . \:  \:  { \blue{ \bold{ y_{1} = 7 }}} \:  \:  \\

  \\ \:  \: \:  \: . \:  \:  { \blue{ \bold{ y_{2} = 2 }}} \:  \:  \\

• Now put the values –

  \\ \implies {\bold{Distance = \sqrt{ {{( x_{2} -  x_{1} ) }^{2}  +( y_{2} -  y_{1} ) }^{2} }  }} \:  \:  \\

  \\ \implies {\bold{10 = \sqrt{ {{( 3 -  x) }^{2}  +( 2 - 7) }^{2} }  }} \:  \:  \\

  \\ \implies {\bold{10 = \sqrt{ {{( 3 -  x) }^{2}  +(  - 5) }^{2} }  }} \:  \:  \\

• Now square on both sides –

  \\ \implies {\bold{(10)^{2}  = { {{( 3 -  x) }^{2}  +(  - 5) }^{2} }  }} \:  \:  \\

  \\ \implies {\bold{100 = { {{( 3 -  x) }^{2}  +25} }  }} \:  \:  \\

  \\ \implies {\bold{75 = { {{( 3 -  x) }^{2}  } }  }} \:  \:  \\

• Now take square root on both sides –

  \\ \implies {\bold{3 - x =  \pm  \sqrt{75}  }} \:  \:  \\

  \\ \implies {\bold{ - x =  \pm  \sqrt{75}  - 3 }} \:  \:  \\

  \\ \implies {\bold{  x =   -  \sqrt{75}   + 3  \:  \: , \:  \: x =  \sqrt{75}  + 3}} \:  \:  \\

Similar questions