Math, asked by pavaninallana7, 9 months ago

if the distance from p to the points (3,4) and (-3,4) are in the ratio 3:2 find the locus of p​

Answers

Answered by divya160585
8

Answer:

The locus of P is

5x^2+5y^2-34x+120y+29=05x2+5y2−34x+120y+29=0

Step-by-step explanation:

Step-by-step explanation:

Formula used:

The distance between two points (x_1,y_1)\:and\:(x_2,y_2)\:is\:d= \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}(x1,y1)and(x2,y2)isd=(x1−x2)2+(y1−y2)2

Let the moving point be P(h,k)

Let the given points be A(5,-4) and B(7,6)

Given:

AP:BP = 2:3

\frac{AP}{BP}=\frac{2}{3}BPAP=32

3\:AP=2\:BP3AP=2BP

3\:\sqrt{(h-5)^2+(k+4)^2}=2\:\sqrt{(h-7)^2+(k-6)^2}3(h−5)2+(k+4)2=2(h−7)2+(k−6)2

squaring on both sides we get

9\:[(h-5)^2+(k+4)^2]=4\:[(h-7)^2+(k-6)^2]9[(h−5)2+(k+4)2]=4[(h−7)2+(k−6)2]

9\:[h^2+25-10h+k^2+16+8k]=4\:[h^2+49-14h+k^2+36-12k]9[h2+25−10h+k2+16+8k]=4[h2+49−14h+k2+36−12k]

9h^2+225-90h+9k^2+144+72k=4h^2+196-56h+4k^2+144-48k9h2+225−90h+9k2+144+72k=4h2+196−56h+4k2+144−48k

9h^2+225-90h+9k^2+72k=4h^2+196-56h+4k^2-48k9h2+225−90h+9k2+72k=4h2+196−56h+4k2−48k

5h^2+5k^2-34h+120k+29=05h2+5k2−34h+120k+29=0

\therefore∴ The locus of P is

5x^2+5y^2-34x+120y+29=05x2+5y2−34x+120y+29=0

Answered by alagadapanagaraju123
0

Answer:

x=p

Step-by-step explanation:

above answer is correct

Similar questions