Math, asked by tarunvarmarockzz, 1 year ago

if the distance from p to the points (5,-4) (7,6) are in the ratio 2:3 then find the locus of p​

Answers

Answered by MaheswariS
91

Answer:

The locus of P is

5x^2+5y^2-34x+120y+29=0

Step-by-step explanation:

Formula used:

The distance between two points (x_1,y_1)\:and\:(x_2,y_2)\:is\:d= \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Let the moving point be P(h,k)

Let the given points be A(5,-4) and B(7,6)

Given:

AP:BP = 2:3

\frac{AP}{BP}=\frac{2}{3}

3\:AP=2\:BP

3\:\sqrt{(h-5)^2+(k+4)^2}=2\:\sqrt{(h-7)^2+(k-6)^2}

squaring on both sides we get

9\:[(h-5)^2+(k+4)^2]=4\:[(h-7)^2+(k-6)^2]

9\:[h^2+25-10h+k^2+16+8k]=4\:[h^2+49-14h+k^2+36-12k]

9h^2+225-90h+9k^2+144+72k=4h^2+196-56h+4k^2+144-48k

9h^2+225-90h+9k^2+72k=4h^2+196-56h+4k^2-48k

5h^2+5k^2-34h+120k+29=0

\therefore The locus of P is

5x^2+5y^2-34x+120y+29=0

Similar questions