Math, asked by saxenapooja2020, 5 months ago

if the distance of a point P from (6,0) is twice its distance from the point (1,3) show that the locus of P is a circle find its centre and radius​

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: show \: that :  \\ locus \: of \: P \: is \: a \: circle \\ to \: find :  \\ radius \: of \: circle \\  \\ let \: here \\ A = (6,0) \\ B = (1,3) \\ P = (x,y) \\  \\ since \: here \\ AP=2BP \\ AP {}^{2} =4BP {}^{2}  \\  \\ (x - 6) {}^{2}  + (y - 0) {}^{2}  = \\  4[(x - 1) {}^{2}  + (y - 3) {}^{2} ] \\  \\ x {}^{2}  - 12x + 36 + y {}^{2}  =  \\ 4(x { }^{2}  - 2x + 1 + y {}^{2}  - 6y + 9) \\  \\ x {}^{2}  + y {}^{2}  - 12x + 36 = 4x {}^{2}  - 8x +  \\ 4y {}^{2} -   24y + 40 \\  \\ 3x {}^{2}  + 3y {}^{2}  + 4x - 24y + 4 = 0 \\  \\ dividing \: throughout \: by \: 3 \\ we \: get \\  \\ x {}^{2}  + y {}^{2}  +  \frac{4}{3} x - 8y +  \frac{4}{3}  = 0 \\  \\ which \: is \: i n\: form \\ x {}^{2}  + y {}^{2}  + 2gx + 2fy +c =  0 \\ ie \: in \: general \: form \: of \: circle

so \: thus \: then \\ 2g =  \frac{4}{3} \: ; \: 2f =  - 8  \:   ; \: c =  \frac{4}{3} \\  \\ g =  \frac{2}{3}  \: ; \: f =  - 4 \\  \\ we \: know \: that \\ r =  \sqrt{g {}^{2}  + f {}^{2}  - c}  \\  \\  =  \sqrt{( \frac{2}{3}) {}^{2}   + ( - 4) {}^{2}  -  \frac{4}{3} }  \\  \\  =  \sqrt{ \frac{4}{9}  + 16 -  \frac{4}{3} }  \\  \\  =   \sqrt{ \frac{4}{9}  -  \frac{12}{9}  + 16}  \\  \\  =  \sqrt{ \frac{ - 8}{9} + 16 }  \\  \\  =   \sqrt{ \frac{(16 \times 9) - 8}{9} }  \\  \\  =  \sqrt{ \frac{144 - 8}{9} }  \\  \\  =  \sqrt{ \frac{136}{9} }  \\  \\  =  \frac{2. \sqrt{34} }{3}  \\  \\ which \: is \:  > 0 \\ ie \:  \:  \frac{2. \sqrt{34} }{3}  \:  > 0 \\  \\ hence \: the \: given \: locus \: is \: a \: circle

Similar questions