CBSE BOARD X, asked by Anglepriya5122, 1 year ago

If the distance of p,(x,y)from a(5,1)and b(-1,5)are equal,then prove that 3x=2y

Answers

Answered by Anonymous
6

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathcal{\bf{{\underline{\underline{\huge\mathcal{...Answer...}}}}}}

\large\mathcal\red{solution}

the distance of p,(x,y)from a(5,1)and b(-1,5)are equal....

therefore...pa=pb

now......

pa =  \sqrt{(5 - x) {}^{2} + (y - 1) {}^{2}  }  \\ pb =  \sqrt{(x + 1) {}^{2} + (y - 5) {}^{2}  }  \\ now \:  \:  \:  \\ pa = pb \\  \sqrt{(5 - x) {}^{2}  + (y - 1) {}^{2} }  =  \sqrt{(x + 1) {}^{2} + (y - 5) {}^{2}  }  \\  =  > (5 - x) {}^{2}  + (y - 1) {}^{2}  =( x + 1) {}^{2}  + (y - 5) {}^{2}  \\  =  > 25 - 10x + x {}^{2}  + y {}^{2}  - 2y + 1 = x {}^{2}  + 2x + 1 + y {}^{2}  - 10y + 25 \\  =  >  - 10x - 2y = 2x - 10y \\  =  > 8y = 12x \\  =  > 3x = 2y \:  \: (proved)

\underline{\large\mathcal\red{hope\: this \: helps \:you......}}

Similar questions