Math, asked by radhapadhye2020, 1 month ago

If the distance of paint A(3,k) is 5 from the origin, find the value of k​

Answers

Answered by GraceS
5

\sf\huge\bold{Answer:}

Given :

point A(3,k)

origin O (0,0)

Distance between point A and origin O i.e AO = 5units

To find :

Value of k

Solution :

Distance formula

:⟶d =  \sqrt{( { x_{2} - x_{1})}^{2}  + (y_{2} - y_{1}) {}^{2} }  \\

where

{x_{1}} = 3 ( x coordinate of point A )

{x_{2}} = 0 ( x coordinate of origin O )

{y_{1}} = k ( y coordinate of point A )

{y_{2}} = 0 ( y coordinate of origin O )

Distance AO = 5 units

Inserting values in distance formula

:⟶AO =  \sqrt{( { 0-3)}^{2}  + (0 - k) {}^{2} }  \\

:⟶5 =  \sqrt{( { -3)}^{2}  + ( - k) {}^{2} }  \\

:⟶5 =  \sqrt{ 9 + ( - k) {}^{2} }  \\

Squaring both sides

:⟶(5)  {}^{2} = (\sqrt{9  + ( - k) {}^{2} })  {}^{2}  \\

:⟶25 =   9  + ( - k) {}^{2}   \\

:⟶25 - 9 =   ( - k) {}^{2}   \\

:⟶16 =   ( -1) {}^{2}  (k) {}^{2}   \\

:⟶16 =    k{}^{2}   \times 1 \\

:⟶k =  \sqrt{16}    \\

:⟶k =  \sqrt{4  \times 4}    \\

:⟶k = 4

Value of k = 4 units.

Similar questions