Math, asked by pavan262726, 4 months ago

. If the distances from P to the points (5,–4), (7, 6) are in the ratio 2 : 3, then find the locus
of P

Answers

Answered by 0226
6

Answer:

5x^  2  +5y^2   −34x+120y+29=0

Step-by-step explanation:

Let P(x,y) be a point in locus.

The given points are A(5,−4) and B(7,6) and given that PA:PB=2:3. Therefore, we have:

PA /PB =  3/2  

⇒3PA=2PB

⇒9PA  ^2 =4PB  ^2

 Now, applying the distance formula to the given points A(5,−4) and B(7,6):

9[(x−5)^2 +(y+4)  ^2 ]=4[(x−7)  ^2 +(y−6)  ^2 ]

⇒9[x  ^2 +5  ^2 −(2×x×5)+y  ^2 +4  ^2 +(2×y×4)]=4[x  ^2 +7  ^2 −(2×x×7)+y  ^2 +6  ^2 −(2×y×6)] (∵(a+b)  ^2) =a  ^2 +b  ^2 +2ab,(a−b)  ^2 =a  ^2 +b^2 −2ab)

⇒9(x  ^2 +25−10x+y  ^2 +16+8y)=4(x  ^2  +49−14x+y  ^2 +36−12y)

⇒9(x ^2 +y^2   −10x+8y+41)=4(x  ^2+y^2   −14x−12y+85)

⇒9x  ^2 +9y ^2 −90x+72y+369=4x  ^2 +4y  ^2 −56x−48y+340

⇒9x^2   −4x ^2  +9y  ^2 −4y  ^2−90x+56x+72y+48y+369−340=0

⇒5x  ^2 +5y^  2  −34x+120y+29=0

Hence, the equation of locus of P is 5x^  2  +5y^2   −34x+120y+29=0

Similar questions