Physics, asked by drehkdrizzys, 11 months ago

If the effective spring constant of a 2500 kg car is 50000 N/m, what is the period of its vibration after hitting a bump?

Answers

Answered by shadowsabers03
4

Given,

  • Spring Constant, \sf{k=50000\ N\,m^{-1}}
  • Mass of car, \sf{m=2500\ kg}

The car undergoes an SHM when it hits a bump.

So the time period of the car is,

\longrightarrow\sf{T=\dfrac{2\pi}{\omega}\quad\quad\dots(1)}

where \omega is the angular frequency.

But for a simple harmonic motion, the acceleration,

\longrightarrow\sf{a=-\omega^2x}

\longrightarrow\sf{\omega^2=-\dfrac{a}{x}\quad\quad\dots(2)}

where \sf{x} is the displacement.

But the restoring force,

\longrightarrow\sf{F=-kx}

By second law of motion,

\longrightarrow\sf{ma=-kx}

\longrightarrow\sf{-\dfrac{a}{x}=\dfrac{k}{m}}

Then (2) becomes,

\longrightarrow\sf{\omega^2=\dfrac{k}{m}}

\longrightarrow\sf{\omega=\sqrt{\dfrac{k}{m}}}

Hence (1) becomes,

\longrightarrow\sf{T=\dfrac{2\pi}{\sqrt{\dfrac{k}{m}}}}

\longrightarrow\sf{T=2\pi\sqrt{\dfrac{m}{k}}}

Substituting the corresponding values,

\longrightarrow\sf{T=2\pi\sqrt{\dfrac{2500}{50000}}}

\longrightarrow\sf{T=2\pi\sqrt{\dfrac{1}{20}}}

\longrightarrow\sf{\underline{\underline{T=\dfrac{\pi}{\sqrt5}\ s}}}

\longrightarrow\sf{\underline{\underline{T=1.4\ s}}}

Similar questions