if the eigenvalues of a matrix a of order 3 are 2,3 and 4. find the eigenvalues of adj A
Answers
Answered by
0
Answer:
Mark me as Brainliest and followers
Step-by-step explanation:
SOLUTION
GIVEN
Eigen values of A of order 3x3 are 2,3 and 1
TO DETERMINE
Eigen values of adjoint of A.
CONCEPT TO BE IMPLEMENTED
If \sf{ { \lambda}_{1}, {\lambda}_{2},..., {\lambda}_{n}}λ
1
,λ
2
,...,λ
n
are eigen values of a n × n non singular matrix A then the eigen values of adj A are
\sf{ { c{\lambda}_{1}}^{ - 1} , c{{\lambda}_{2}}^{ - 1} ,..., c{{\lambda}_{n}}^{ - 1} }cλ
1
−1
,cλ
2
−1
,...,cλ
n
−1
Where \sf{ c = { \lambda}_{1} {\lambda}_{2} \times ... \times {\lambda}_{n}}c=λ
1
λ
2
×...×λ
n
EVALUATION
Here it is given that Eigen values of A of order 3x3 are 2,3 and 1,
So the Eigen values of adjoint of A
= 2 × 3 , 3 × 1 , 2 × 1
= 6 , 3 , 2
Similar questions