Math, asked by firestar2724, 5 months ago

if the eleventh term of an arithmetic progression is 24 find s21​

Answers

Answered by varadad25
8

Answer:

\displaystyle{\boxed{\red{\sf\:S_{21}\:=\:504}}}

Step-by-step-explanation:

We have given that, \displaystyle{\sf\:t_{11}\:=\:24} for a arithmetic progression.

We have to find \displaystyle{\sf\:S_{21}}

Now, we know that,

\displaystyle{\pink{\sf\:t_n\:=\:a\:+\:(\:n\:-\:1\:)\:d}\sf\:\:\:-\:-\:-\:[\:Formula\:]}

\displaystyle{\implies\sf\:t_{11}\:=\:a\:+\:(\:11\:-\:1\:)\:\times\:d}

\displaystyle{\implies\sf\:24\:=\:a\:+\:10\:d}

\displaystyle{\implies\sf\:a\:+\:10\:d\:=\:24\:\:\:-\:-\:-\:(\:1\:)}

Now, we know that,

\displaystyle{\pink{\sf\:S_n\:=\:\dfrac{n}{2}\:[\:2a\:+\:(\:n\:-\:1\:)\:d\:]}\sf\:\:\:-\:-\:-\:[\:Formula\:]}

\displaystyle{\implies\sf\:S_{21}\:=\:\dfrac{21}{2}\:[\:2a\:+\:(\:21\:-\:1\:)\:\times\:d\:]}

\displaystyle{\implies\sf\:S_{21}\:=\:\dfrac{21}{2}\:[\:2a\:+\:20\:d\:]}

\displaystyle{\implies\sf\:S_{21}\:=\:\dfrac{21}{2}\:[\:2\:\times\:(\:a\:+\:10\:d\:)\:]}

\displaystyle{\implies\sf\:S_{21}\:=\:\dfrac{21}{2}\:(\:2\:\times\:24\:)\:\:\:-\:-\:-\:[\:From\:(\:1\:)\:]}

\displaystyle{\implies\sf\:S_{21}\:=\:\dfrac{21}{\cancel{2}}\:\times\:\cancel{2}\:\times\:24}

\displaystyle{\implies\sf\:S_{21}\:=\:21\:\times\:24}

\displaystyle{\implies\underline{\boxed{\red{\sf\:S_{21}\:=\:504}}}}

∴ The sum of the first 21 terms of the arithmetic progression is 504.

Answered by niteshkumar05naurang
1

Answer:

HOPE THIS HELP YOU.......

Attachments:
Similar questions