If the equation (1+ m)2x2+2mx+c2-a2=0 has equal roots, show that c2=a2(1+m)2
Answers
Answered by
9
Given Equation is (1 + m^2) x^2 + 2mx + c^2 - a^2 = 0
Given that the equation has equal roots.
We know that when the roots are real and equal, then the quadratic equation b^2 - 4ac = 0.
Here b = 2mc, c = (c^2 - a^2), a = (1 + m^2).
Now,
b^2 - 4ac = 0
(2mc)^2 - 4(1 + m^2)(c^2 - a^2) = 0
4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - m^2a^2) = 0
4m^2c^2 - 4c^2 + 4a^2 - 4m^2c^2 + 4m^2a^2 = 0
4m^2a^2 - 4c^2 + 4a^2 = 0
m^2a^2 - c^2 + a^2 = 0
a^2(m^2 + 1) - c^2 = 0
c^2 = a^2(1 + m^2).
LHS = RHS.
Hope this helps!
Given that the equation has equal roots.
We know that when the roots are real and equal, then the quadratic equation b^2 - 4ac = 0.
Here b = 2mc, c = (c^2 - a^2), a = (1 + m^2).
Now,
b^2 - 4ac = 0
(2mc)^2 - 4(1 + m^2)(c^2 - a^2) = 0
4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - m^2a^2) = 0
4m^2c^2 - 4c^2 + 4a^2 - 4m^2c^2 + 4m^2a^2 = 0
4m^2a^2 - 4c^2 + 4a^2 = 0
m^2a^2 - c^2 + a^2 = 0
a^2(m^2 + 1) - c^2 = 0
c^2 = a^2(1 + m^2).
LHS = RHS.
Hope this helps!
Answered by
3
Hi ,
Compare
( 1 + m )² x² + 2mx + c² - a² = 0 with
Ax² + bx + C = 0 ,
A = ( 1 + m)² ,
b = 2m ,
C = c² - a² ,
According to the problem given ,
Roots are equal .
Therefore ,
b² = 4AC
( 2m )² = 4 ( 1 + m )² ( c² - a² )
4m² = 4( 1 + m)² ( c² - a² )
m² = ( 1 + m )² ( c² - a² )
m² = c² ( 1 + m)² - a² ( 1 + m )²
a² ( 1 + m )² = c² ( 1 + m )² - m²
I hope this helps you.
:)
Compare
( 1 + m )² x² + 2mx + c² - a² = 0 with
Ax² + bx + C = 0 ,
A = ( 1 + m)² ,
b = 2m ,
C = c² - a² ,
According to the problem given ,
Roots are equal .
Therefore ,
b² = 4AC
( 2m )² = 4 ( 1 + m )² ( c² - a² )
4m² = 4( 1 + m)² ( c² - a² )
m² = ( 1 + m )² ( c² - a² )
m² = c² ( 1 + m)² - a² ( 1 + m )²
a² ( 1 + m )² = c² ( 1 + m )² - m²
I hope this helps you.
:)
Similar questions