If the equation (1+m²) x²+2mcx+c²-a²=0 has equal roots then show that c²=a²(1+m²).
Answers
Solution
Given :-
- Equation, (1+m²)x² + 2mc x + (c² - a²) = 0
- Roots are equal
Show That:-
- c² = a²(1 + m²)
Explanation
Let,
- Roots are p & q
Then, according to question,
- p = q
Using Formula
So, Now
==> Product of roots = (c² - a²)/(1 + m²)
==> p.q = (c² - a²)/(1 + m²)
We Know,
- p = q
==> p.p = (c² - a²)/(1 + m²)
==> p² = (c² - a²)/(1 + m²) ___________(1)
Again,
==> Sum of roots = -2mc/(1 + m²)
==> p + q = -2mc/(1 + m²)
We know,
- p = q
==> p + p = - 2mc/(1 + m²)
==> 2p = - 2mc/(1 + m²)
Or,
==> p = -mc/(1 + m²)
Keep Value of p in equ(1)
==> [ -mc/(1 + m²) ]² = (c² - a²)/(1 + m²)
==> m²c²/(c² - a²) = (1 + m²)²/(1 + m²)
==> m²c²/(c² - a²) = (1 + m²)
==> m²c² = (c² - a²)(1 + m²)
==> m²c² = c² + m²c² - a² - a²m²
==> a²(1 + m²) = c²
Or,
==> c² = a²(1 + m²)
That's proved.
__________________
Hey there,
Conditions implemented → For equal roots
Hence, D=0 , b² = 4ac
proceeding in that manner,
Given equation,
(1 + m²)x² + 2mcx + ( c² - a² ) =0
For equal roots,
4m²c² = 4( 1 + m² ) ( c² - a² )
4m²c² = 4c² - 4a² + 4c²m² - 4a²m²
4c² - 4a²m² - 4a² = 0
4 [ c² - a²m² - a² ] = 0
c² = a²m² + a²
c² = a² [ 1 + m² ]
Hope this helps!