if the equation (1+m2)/x2+2mcx+c2-a2 has equal roots. then prove that c2=a2(1+m2)
Answers
Answered by
2
here 1+m^2 is divided by x^2 or in multiply
Kunalkaramchandani:
divide
Answered by
12
(1+m2)n2 +(2mc)n+(c2-a2)
B2-4ac (equal roots)
(2mc)2-4(1+m2)(c2-a2)
4(m2c2)-4(1+m2)(c2-a2)
M2c2-(c2-a2)+(m2c2-m2a2)
M2c2-c2+a2-m2c2+m2a2
-c2+a2+m2a2
C2=a2+m2a2
C2=a2(1+m2)
B2-4ac (equal roots)
(2mc)2-4(1+m2)(c2-a2)
4(m2c2)-4(1+m2)(c2-a2)
M2c2-(c2-a2)+(m2c2-m2a2)
M2c2-c2+a2-m2c2+m2a2
-c2+a2+m2a2
C2=a2+m2a2
C2=a2(1+m2)
Similar questions