Math, asked by jagtapyash9988, 4 months ago

If the equation (1−λ)sin^2
x+(1+λ)sin x+(1−λ)=0 is having real roots, then solution of λ is ​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(1 -  \lambda) \sin^{2} (x)  + (1 + \lambda) \sin(x)  + (1 - \lambda) = 0 \\

Since, it has real roots, so, its discriminant ≥ 0

Now,

(1 + \lambda)^{2}  - 4(1 - \lambda)^{2}  \geqslant 0 \\

 \implies(1 + \lambda^{2}  + 2\lambda) - 4 + 8\lambda - 4\lambda^{2}  \geqslant 0 \\

 \implies \:  - 3\lambda^{2}  + 10\lambda - 3 \geqslant 0

 \implies \: 3\lambda^{2}  - 10\lambda + 3 \leqslant 0

 \implies3\lambda^{2}  - 9\lambda - \lambda + 3 \leqslant 0 \\

 \implies3\lambda(\lambda - 3) - 1(\lambda - 3) \leqslant 0

 \implies(\lambda - 3)(3\lambda - 1) \leqslant 0

 \implies \lambda \in [\frac{1}{3},3]\\

Similar questions