if the equation 2x square + kx - 5 = 0 and x square - 3 x minus 4 is equal zero have one root in common then find the value of k
Answers
Step-by-step explanation:
Given that the equations 2x² + kx - 5 = 0 and x² - 3x - 4 have one common root.
Let the common root be y.
Substitute the value of y, we get
2y² + ky - 5 = 0
y² - 3y - 4 = 0
On solving (i) & (ii) * 2, we get
2y² + ky = 5
2y² - 6y = 8
-----------------------
(k + 6)y = -3
y = -3/k + 6
Substitute y in (i), we get
⇒ 2y² + ky - 5 = 0
⇒ 2(-3/k + 6)² + k(-3/k + 6) - 5 = 0
⇒ 18 - 3k(k + 6) = 5(k + 6)²
⇒ 18 - 3k² - 18k = 5(k² + 36 + 12)
⇒ -8k² - 78k - 162 = 0
⇒ 8k² + 78k + 162 = 0
⇒ 4k² + 39k + 81 = 0
⇒ 4k² + 12k + 27k + 81 = 0
⇒ 4k(k + 3) + 27(k + 3) = 0
⇒ (k + 3)(4k + 27) = 0
⇒ k = -3, -27/4
Hope it helps!
2x^2+kx-5=0.........(1)
x^2-3x-4=0..........(2)
solving equation 2
x^2-3x+x-4=0;
(x+1)(x-4)=0;
x=-1;x=4;
put x value in first equation
x=-1;
2-k-5=0;
k=-3;
x=4;
32+4k-5=0
k=-27/4