If the equation (3x)2 + (27 × 3 1/k – 15) x + 4 = 0 has equal roots, then k = (a) – 2 (b) -1/2 (c) 1/2 (d) 0
Answers
k = -1/2
Step-by-step explanation:
The given equation is
9{x}^{2} + (27. {3}^{ \frac{1}{k} } - 15)x + 4 = 09x
2
+(27.3
k
1
−15)x+4=0
The quadratic equation has equal roots. Therefore the discriminant of the equation is zero.
d \: = {b}^{2} - 4ac \: = 0d=b
2
−4ac=0
{(27. {3}^{ \frac{1}{k} }-15) }^{2} - 4.9.4 = 0(27.3
k
1
−15)
2
−4.9.4=0
{(27. {3}^{ \frac{1}{k} } - 15)}^{2} = {12}^{2}(27.3
k
1
−15)
2
=12
2
27. {3}^{ \frac{1}{k}} - 15 = + - 1227.3
k
1
−15=+−12
27. {3}^{ \frac{1}{k} } = 27 \: or \: 327.3
k
1
=27or3
{3}^{ \frac{1}{k} } = 1 \: or \: \frac{1}{9}3
k
1
=1or
9
1
{3}^{ \frac{1}{k} } = {3}^{0} or \: {3}^{ - 2}3
k
1
=3
0
or3
−2
\frac{1}{k} = 0 \: or \: - 2
k
1
=0or−2
k \: = -\frac{1}{2}k=−
2
1
Since no finite k satisfy 1/k = 0, it is neglected.