If the equation (a^2+b^2)-2(ac+bd)x+c^2+d^2=0 has equal roots then a)ab=cd b)ad=bc c)ad=underroot bc d)ab=underroot cd
Answers
Answer:
If the equation has equal root
SUM of root = - f/e here e= (a^2+b^2)
f= -2(ac+bd) and g=(c^2+d^2)
Produt of root = g/e
If r and s are the roots
For equal roots r=s
SUM of root = r+s = r+r = 2r
2r= -f/e =2(ac+bd)/ (a^2+b^2)
r= (ac+bd) /(a^2+b^2). (1)
For products of root r*s= r*r = r^2
r^2=g/e= (c^2+d^2)/(a^2+b^2). (2)
Take a square of equation 1
r^2= (ac+bd) ^2/ (a^2+b^2)^2
Now put it in eqution 2
(ac+bd) ^2/ (a^2+b^2)^2=(c^2+d^2)/(a^2+b^2)
(ac+bd) ^2/ (a^2+b^2)=(c^2+d^2)
(ac+bd) ^2=(c^2+d^2)(a^2+b^2)
(ac)^2+(bd)^2+2abcd= (ac)^2 +(bc) ^2+(ad)^2+(bd)^2
2abcd= (ad) ^2+(bc)^2
(ad) ^2+(bc)^2- 2abcd= 0
( ad-bc)^2=0
ad-bc=0
ad= bc
So, the (b) option is correct
Answer:
...................................