Math, asked by divyasharma51, 1 month ago

If the equation (a² + b²)x²- 2b(a + c)x+b² + c² = 0 has equal roots then (a) 2b =a +c (6) b² = ac (c) b= 2ac/a+c (d) b=ac
Step By Step Answer required.​​

Answers

Answered by rakeshdubey33
1

Step-by-step explanation:

For a quadratic equation,

a {x}^{2}  + bx \:  + c = 0

If roots are equal, then

discriminant \:  \:  {b}^{2}  - 4ac \:  = 0

Therefore,

 { (- 2b(a \:  + c))}^{2}  - 4( {a}^{2}  +  {b}^{2} )( {b}^{2}  +  {c}^{2} ) = 0

=

4 {b}^{2} ( {a \:  + c)}^{2}  - 4( {a}^{2}  {b}^{2}  +  {a}^{2}  {c}^{2}  +  {b}^{4}  +  {b}^{2}  {c}^{2} ) = 0

=

 {b}^{2} ( {a}^{2}  +  {c}^{2}  + 2ac) -  {a}^{2}  {b}^{2}  -  {a}^{2}  {c}^{2}  -  {b}^{4}  -  {b}^{2}  {c}^{2}  = 0

=

 {b}^{2}  {a}^{2}  +  {b}^{2}  {c}^{2}  + 2ac {b}^{2}  -  {a}^{2}  {b}^{2}  -  {a}^{2}  {c}^{2}  -  {b}^{4}  -  {b}^{2}  {c}^{2}  = 0

=

2ac {b}^{2}  -  {a}^{2}  {c}^{2}  -  {b}^{4}  = 0

=

 {(ac -  {b}^{2}) }^{2}  = 0

=

 {b}^{2}  = ac

Hence, option (b) is correct.

Similar questions