Math, asked by irfan8964, 1 year ago

If the equation (b - c) {x}^{2} + (c - a)x + (a - b) = 0 के मूल समान है । तो सिद्ध किजिए कि 2b = a + c​

Answers

Answered by Anonymous
4

\mathfrak{\large{\underline{\underline{Given :-}}}}

\bold{(b - c) {x}^{2}  + (c - a)x + (a - b) = 0}

\mathfrak{\large{\underline{\underline{To prove:-}}}}

2b = a + c

\mathfrak{\large{\underline{\underline{proof:-}}}}

Let a = (b - c) , b = ( c - a) , c = (a - b)

Finding,it's discriminant by using discriminant rule :-

\boxed{\sf{D ={b}^{2}  - 4ac }}

put the value of a, b, c

\implies \bold{D =  {(c - a)}^{2}  - 4.(b - c).(a - b)}

\implies \bold{{c}^{2}  +  {a}^{2}  + 2ac - 4(ab -  {b}^{2}   - ac +  bc) = 0 }

\implies \bold{ {c}^{2}  +  {a}^{2}  - 2ac - 4ab  + 4 {b}^{2}  + 4ac - 4bc = 0}

Using suitable identity :-

\boxed{\sf{{(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab  + \:2 bc +  \: 2ca}}

\implies \bold{ {(a - 2b + c)}^{2}  = 0}

\implies \bold{2b = a + c}

Similar questions