If the equation (l + m^2)x^2 + 2mcx + (c^2 - a^2) = 0 has equal roots, help me to prove that c^2= a^2(l + m^2)..
Answers
Answered by
24
★ QUADRATICS RESOLUTION ★
☣ CONDITIONS IMPLEMENTED → FOR EQUAL ROOTS
☣ HENCE , D=0 , b² = 4ac
☣ PROCEEDING IN THAT MANNER ...
☣ GIVEN EQUATION ...
☣ (1 + m²)x² + 2mcx + ( c² - a² ) =0
☣ FOR EQUAL ROOTS ...
☣ 4m²c² = 4( 1 + m² ) ( c² - a² )
☣ 4m²c² = 4c² - 4a² + 4c²m² - 4a²m²
☣ 4c² - 4a²m² - 4a² = 0
☣ 4 [ c² - a²m² - a² ] = 0
☣ c² = a²m² + a²
☣ c² = a² [ 1 + m² ]
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
☣ CONDITIONS IMPLEMENTED → FOR EQUAL ROOTS
☣ HENCE , D=0 , b² = 4ac
☣ PROCEEDING IN THAT MANNER ...
☣ GIVEN EQUATION ...
☣ (1 + m²)x² + 2mcx + ( c² - a² ) =0
☣ FOR EQUAL ROOTS ...
☣ 4m²c² = 4( 1 + m² ) ( c² - a² )
☣ 4m²c² = 4c² - 4a² + 4c²m² - 4a²m²
☣ 4c² - 4a²m² - 4a² = 0
☣ 4 [ c² - a²m² - a² ] = 0
☣ c² = a²m² + a²
☣ c² = a² [ 1 + m² ]
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Similar questions