Math, asked by deep4026, 26 days ago

If the equation (m-1)x2 + 2(m-3)X + (2m-3) = 0 have equal roots, then the value of m can be

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{The equation}

\mathsf{(m-1)x^2+2(m-3)x+(2m-3)=0\;has\;equal\;roots}

\underline{\textbf{To find:}}

\textsf{The value of m}

\underline{\textbf{Solution:}}

\mathsf{Consider}

\mathsf{(m-1)x^2+2(m-3)x+(2m-3)=0}

\mathsf{Here,\;a=m-1,\;b=2(m-3),\;c=2m-3}

\textsf{Since the given equation has equal roots,}

\mathsf{we\;have\;b^2-4ac=0}

\implies\mathsf{[2(m-3)]^2-4(m-1)(2m-3)=0}

\implies\mathsf{4(m-3)^2-4(m-1)(2m-3)=0}

\implies\mathsf{4(m^2+9-6m)-4(2m^2-3m-2m+3)=0}

\implies\mathsf{(m^2+9-6m)-(2m^2-5m+3)=0}

\implies\mathsf{m^2+9-6m-2m^2+5m-3=0}

\implies\mathsf{-m^2-m+6=0}

\implies\mathsf{m^2+m-6=0}

\textsf{Factorizing we get}

\mathsf{(m+3)(m-2)=0}

\implies\mathsf{m=-3,2}

\underline{\textbf{Answer:}}

\textbf{The values of m are -3 and 2}

Similar questions