Math, asked by StrongGirl, 7 months ago

If the equation of directrix of an ellipse x^2/a^2 + y^2/b^2 = 1 is x = 4, then normal to the ellipse at point (1, B).(B ≥ 0) passes through the point (where eccentricity of the ellipse is 1/2 )

Attachments:

Answers

Answered by arkanil93
0

Answer:

2) is your answer.

✌️✌️✌️✌️

Answered by amansharma264
3

ANSWER.

=> The normal of the ellipse at point ( 1 , b)

( b > 0 ) passes through the point = ( 1, 3/2 )

Option [ 1 ] is correct answer.

EXPLANATION.

 \sf \to \: equation \: of \: directrix \: of \: an \: ellipse  \\  \\  \sf \to \:  \frac{ {x}^{2} }{ {a}^{2} }  +  \frac{ {y}^{2} }{ {b}^{2} }  = 1 \:  \:  \: is \:  \:  \: x = 4 \\  \\  \sf \to \: eccentricity \:  =  \frac{1}{2}  \:  \:  \: (given)

 \sf \to \: equation \: of \: directrix \:  = x \:  =   \dfrac{a}{e}  \\  \\  \sf \to \: 4 =  \frac{a}{  \dfrac{1}{2}  }   \implies \: 4 = 2a \\  \\  \sf \to \: a \:  = 2  \implies \:  {a}^{2}  = 4 \\  \\  \sf \to \: eccentricity \: of \: the \: ellipse \:  \implies \:  {b}^{2}  =  {a}^{2} (1 -  {e}^{2}) \\  \\  \sf \to \:  {b}^{2} = 4(1 - ( \frac{1}{2}) {}^{2}    ) \\  \\  \sf \to \:  {b}^{2}  = 4(1 -  \frac{1}{4}) \\  \\  \sf \to \:  {b}^{2}  = 4( \frac{3}{4}) \implies \:  {b}^{2}  = 3

 \sf \to \: equation \: of \: ellipse \: is \: written \: as \\  \\  \sf \to \:  \frac{ {x}^{2} }{4}  +  \frac{ {y}^{2} }{3}  = 1

 \sf \to \: the \: normal \: to \: the \: ellipse \: at \: pont \: (1, \beta ) \:  \: ( \beta  > 0) \\  \\  \sf \to \: put \: the \: value \: of \: normal \: in \: the \: equation \: of \: ellipse \\  \\  \sf \to \:  \frac{ {1}^{2} }{4}  +  \frac{ { \beta }^{2} }{3} = 1 \\  \\  \sf \to \:  \frac{ { \beta }^{2} }{3}  = 1 -  \frac{ 1 }{4}  \\  \\  \sf \to \:  \frac{ { \beta }^{2} }{3} =  \frac{3}{4}   \\  \\  \sf \to \:  \beta  =  \frac{3}{2}  \:  \: and \:  \: ( \beta  > 0)

 \sf \to \:  \green{{ \underline{normal \: at \: the \: ellipse \: passes \: through \: point \:  = (1, \dfrac{3}{2} }}})

Similar questions