Math, asked by tigerlionking, 5 months ago

If the equation x^2 + ax + b and x^2 + bc + a have a common root then a + b = ,?

(a) –1 (b) 2 (c) 3 (d) 4​

Answers

Answered by ravindrabansod26
8

Question:-

⇒ If the equation x^2 + ax + b and x^2 + bc + a have a common root then a + b = ,?

Answer:-

⇒ Let α be the common root then ,

we have given equation  :-

x^2 + ax + b = 0----(1)

x^2 + bc + a = 0----(2)

_-_-_-_-_-_-_-_-_-_-_-_-_

⇒ from equation (1)

 → \alpha ^2 + a\alpha  + b = 0-----(3)

⇒ from equation (2)

 → \alpha ^2 + b\alpha  + a = 0----(4)

_-_-_-_-_-_-_-_-_-_-_-_-_

therefore : equation (4) - (3)

we get

\alpha ^2 + b\alpha  + a - \alpha ^2 - a\alpha -b = 0

\alpha (b-a) + (a-b) = 0

\alpha (b-a) = - (a-b)

\alpha = \frac{-(a-b)}{b-a}

\alpha  = 1

so , 1 is common difference between them

by putting this value in equation ( 1)

We get .

(1)^2 + a(1) + b = 0

a+ b = -1

hence our option is (a)

which is correct option:)

Similar questions