Math, asked by suresh2025, 10 months ago

If the equations (1+^m2) x^2 + 2mcx + c^2a^2=0 has equal roots. Show that c^2=a^2(1+m2)

Answers

Answered by BrainlyPopularman
11

CORRECT QUESTION :

If the equations (1 + m²) x² + 2mcx + m² = 0 has equal roots. Show that c² = a²(1+m²).

ANSWER :

GIVEN :

The equations (1 + m²) x² + 2mcx + m²a² = 0 has equal roots.

TO PROVE :

=> c² = a²(1+m²)

SOLUTION :

• If a quadratic equation ax² + bx + c = 0 has equal roots , then Discriminant will be zero.

 \\  \:  \:  \:  \longrightarrow  \:  \:  \large { \boxed{ \bold{ D = 0}}} \\

• And we know that Discriminant –

 \\  \:  \:  \:  \longrightarrow  \:  \:  \large { \boxed{ \bold{ D =  {b}^{2}  - 4ac}}} \\

• Here –

 \\  \:  \:  \:  { \huge{.}}  \:  \:  \:  \large { \bold{a = 1 +  {m}^{2}  }} \\

 \\  \:  \:  \:  { \huge{.}}  \:  \:  \:  \large { \bold{b = 2mc }} \\

 \\  \:  \:  \:  { \huge{.}}  \:  \:  \:  \large { \bold{c =  {m}^{2}  {a}^{2}   }} \\

• So that –

 \\  \:  \:  \implies  \:  \:   { \bold{   {b}^{2}  - 4ac = 0}} \\

• Put the values –

 \\  \:  \:  \implies  \:  \:   { \bold{   {(2mc)}^{2}  - 4(1 +  {m}^{2})(  {m}^{2} {a}^{2})  = 0}} \\

 \\  \:  \:  \implies  \:  \:   { \bold{   {(2mc)}^{2}   =  4(1 +  {m}^{2})(  {m}^{2} {a}^{2})  }} \\

 \\  \:  \:  \implies  \:  \:   { \bold{   4 {m}^{2}   {c}^{2}   =  4(1 +  {m}^{2})(  {m}^{2} {a}^{2})  }} \\

 \\  \:  \:  \implies  \:  \:   { \bold{   \cancel{ 4 {m}^{2}  } {c}^{2}   =   \cancel4(1 +  {m}^{2})(   \cancel{{m}^{2}} {a}^{2})  }} \\

 \\  \:  \:  \implies  \:  \:   { \bold{  {c}^{2}   =   (1 +  {m}^{2})( {a}^{2})  }} \\

 \\  \:  \:  \implies  \:  \:   { \bold{  {c}^{2}   =   {a}^{2}  (1 +  {m}^{2}) }} \\

 \\  \:  \:  \longrightarrow \:  \:   { \bold{  \underline{\underline{ Hence \:  \: proved }}}} \\

Answered by Anonymous
12

Given Equation :-

  •  \sf{(1 +  {m}^{2}) {x}^{2} + 2mcx +  {m}^{2} {a}^{2}    } \\

  • Equation has equal roots.

To Prove :-

  •  \sf{ {c}^{2} =  {a}^{2}(1 +  {m}^{2})    } \\

Solution :-

We know that general form of quadratic equation is :-

 \sf{\implies a {x}^{2} + bx + c = 0 } \\

Comparing given equation with general form of quadratic equation :-

→ a = ( 1+m²)

→ b = 2mc

→ c = m²a²

If roots are equal it means that

→ Discreminant (D) = 0

 \sf{\implies  {b}^{2} - 4ac = 0 }   \\

 \sf{ \implies \: ( {2mc)}^{2} - 4(1 +  {m}^{2} )( {c}^{2}  -  {a}^{2}) = 0 }  \\

 \sf{ \implies \: 4 {m}^{2}. {c}^{2} - 4( {c}^{2} - {a}^{2}+  {m}^{2}{c}^{2}  - {m}^{2}.  {a}^{2}= 0 }  \\

 \sf{ \implies \: 4[ {m}^{2} . {c}^{2}   - ({c}^{2} - {a}^{2}+  {m}^{2}{c}^{2}  - {m}^{2}.  {a}^{2})]= 0 }   \\

 \sf{ \implies \:  {m}^{2} . {c}^{2}   - {c}^{2} + {a}^{2}-   {m}^{2}{c}^{2}  + {m}^{2}.  {a}^{2}= 0 }   \\

 \sf{ \implies \:- {c}^{2} + {a}^{2}+ {m}^{2}.  {a}^{2}= 0 }   \\

 \sf{ \implies \: {a}^{2}(1 +  {m}^{2}) = {c}^{2}}   \\

Hence proved.

Similar questions